Self Studies

Binomial Theorem Test - 57

Result Self Studies

Binomial Theorem Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the fourth term of $${ \left( \sqrt { { x }^{ \left( \cfrac { 1 }{ 1+\log { x }  }  \right)  } } +\sqrt [ 12 ]{ x }  \right)  }^{ 6 }$$ is equal to 200 and $$x>1$$, then $$x$$ is equal to
    Solution
    $${ \left( \sqrt { { x }^{ \left( \cfrac { 1 }{ 1+\log { x }  }  \right)  } } +\sqrt [ 12 ]{ x }  \right)  }^{ 6 }$$ 
    $$={ \left( { x }^{ \cfrac { 1 }{ 2(1+\log { x) }  }  }+{ x }^{ \frac { 1 }{ 12 }  } \right)  }^{ 6 }$$

    Now, $$T_{4}=T_{3+1}=^6C_{3}{ x }^{ \cfrac { 3 }{ 2(1+\log { x) }  }  } {x}^{\cfrac{1}{4}}$$
    $$\Rightarrow \displaystyle 200=20{ x }^{ \cfrac { 3 }{ 2(1+\log { x) }  } +\frac { 1 }{ 4 }  }$$
    $$\Rightarrow 10={ x }^{ \cfrac { 3 }{ 2(1+\log { x) }  } +\frac { 1 }{ 4 }  }$$
    Taking log on both sides,

    $$\Rightarrow \displaystyle 1=\left[{ \cfrac { 3 }{ 2(1+\log { x) }  } +\frac { 1 }{ 4 }}\right]log_{10} x$$
    $$\Rightarrow \displaystyle \frac{1}{log x}-\frac{1}{4}=\frac{3}{2(1+\log x)}$$
    $$\Rightarrow (\log x)^2+3\log x-4=0$$
    $$\Rightarrow (\log x+4)(\log x -1)=0$$
    $$\Rightarrow \log _{10}x=1$$    ($$\because \log x=-4$$, not possible )
    $$\Rightarrow x=10$$
  • Question 2
    1 / -0
    The number of irrational terms in the expansion of $$(\sqrt[8]{5}+\sqrt[6]{2})^{100}$$ is
    Solution
    $$T_{r+1}=\:^{100}C_{r}5^\left({\tfrac{100-r}{8}}\right)2^\left({\tfrac{r}{6}}\right)$$
    For rational terms, $$100 -r$$ should be a multiple of $$8$$ and $$r$$ should be a multiple of $$6$$
    Hence we get rational terms for
    $$r=12, 36, 60$$ and $$84$$
    Hence there will be $$4$$ rational terms.
    Therefore, total number of irrational terms will be
    $$101-4$$
    $$=97$$ terms.
  • Question 3
    1 / -0

    Directions For Questions

    If $${ C }_{ r }={ _{  }^{ n }{ C } }_{ r }$$ then to evaluate the expression 
    $$P= \sum _{ 0\le  }^{  }{ \sum _{ r<s\le n }^{  }{ { C }_{ r } } { C }_{ s } } $$, we make use of $${ C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+....+{ C }_{ n }^{ 2 }={ _{  }^{ 2n }{ C } }_{ n }$$ and expansion of $${ \left( { C }_{ 0 }+{ C }_{ 1 }+....+{ C }_{ n } \right)  }^{ 2 }$$.

    ...view full instructions

    Value of $$P=\sum _{ 0\le  }^{  }{ \sum _{ r<s\le n }^{  }{ { C }_{ r } } { C }_{ s } } $$ is
    Solution

  • Question 4
    1 / -0
    If $$n$$ is even, then value of the expression
    $${ C }_{ 0 }-\cfrac { 1 }{ 2 } { C }_{ 1 }^{ 2 }+\cfrac { 1 }{ 3 } { C }_{ 2 }^{ 2 }-.....+\cfrac { { \left( -1 \right)  }^{ n } }{ n+1 } { C }_{ n }^{ 2 }$$
    where
    $${ C }_{ r }={ _{  }^{ n }{ C } }_{ r }$$ is
    Solution
    We have
    $${ C }_{ 0 }-\cfrac { 1 }{ 2 } { C }_{ 1 }x+\cfrac { 1 }{ 3 } { C }_{ 2 }{ x }^{ 2 }-......+{ \left( -1 \right)  }^{ n }\cfrac { 1 }{ n+1 } { C }_{ n }{ x }^{ n }\quad \cfrac { 1 }{ (n+1)x } \left[ 1-{ (1-x) }^{ n+1 } \right] ........(1)$$
    and
    $${ C }_{ 0 }+\quad { C }_{ 1 }\cfrac { 1 }{ x } +{ C }_{ 2 }\cfrac { 1 }{ { x }^{ 2 } } +........+{ C }_{ n }{ \left( \cfrac { 1 }{ x }  \right)  }^{ n }={ (1+x) }^{ n }\quad .....(2)$$
    Note that
    $$S={ C }_{ 0 }^{ 2 }-\cfrac { 1 }{ 2 } { C }_{ 1 }^{ 2 }+\cfrac { 1 }{ 3 } { C }_{ 2 }^{ 2 }-........+{ \left( -1 \right)  }^{ n }\cfrac { 1 }{ n+1 } { C }_{ n }^{ 2 }\quad $$
    $$=$$ Coefficient of constant term in
    $$\left[ { C }_{ 0 }-\cfrac { 1 }{ 2 } { C }_{ 1 }x+\cfrac { 1 }{ 3 } { C }_{ 2 }{ x }^{ 2 }-......+{ \left( -1 \right)  }^{ n }\cfrac { 1 }{ n+1 } { C }_{ n }{ x }^{ n } \right] \times \left[ { C }_{ 0 }+\quad { C }_{ 1 }\cfrac { 1 }{ x } +{ C }_{ 2 }\cfrac { 1 }{ { x }^{ 2 } } +........+{ C }_{ n }{ \left( \cfrac { 1 }{ { x }^{ n } }  \right)  } \right] $$
    $$=$$ coefficient of constant term in
    $$=\cfrac { 1 }{ n+1 } \left[ \cfrac { 1-{ (1-x) }^{ n+1 } }{ x }  \right] { \left( 1+\cfrac { 1 }{ x }  \right)  }^{ n }\quad $$
    $$=$$ coefficient of $${c}^{n+1}$$ in
    $$\cfrac { 1 }{ n+1 } \left[ { (1+x) }^{ n }-{ (1+{ x }^{ 2 }) }^{ n }(1-x) \right] $$
    $$=-\cfrac { 1 }{ n+1 } \quad coefficient\quad of\quad { x }^{ n+1 }\quad in\quad { (1+{ x }^{ 2 }) }^{ n }(1-x)$$
    As $$n$$ is even, let $$n=2m$$, then
    $$S=\cfrac { 1 }{ 2m+1 } \quad coefficient\quad of\quad { x }^{ 2m }\quad in\quad { (1+{ x }^{ 2 }) }^{ 2m }\quad $$
    $$=\cfrac { 1 }{ 2m+1 } { \left( -1 \right)  }^{ m }\left( { _{  }^{ 2m }{ C } }_{ m } \right) $$
    $$=\cfrac { { \left( -1 \right)  }^{ n } }{ n+1 } ({ _{  }^{ n }{ C } }_{ n/2 })\quad =\cfrac { { \left( -1 \right)  }^{ n/2 }n! }{ (n+1){ (n/2)! }^{ 2 } } $$
  • Question 5
    1 / -0

    Directions For Questions

    If $$ \displaystyle C_{r}=^{n}C_{r} $$ then to evaluate the expansion $$ \displaystyle A=\sum \sum_{0\leq r\leq s\leq n}^{} $$ $$ \displaystyle C_{r}C_{s} $$, We make use of $$ \displaystyle \sum_{r=0}^{n}C_{r}^{2}=^{2n}C_{n} $$ and the expansion of $$ \displaystyle \left ( \sum_{r=0}^{n}C_{r} \right )^{2} $$. On the basis of above information answer the following questions.

    ...view full instructions

    The value of $$ \displaystyle B=\sum_{0\leq r\leq s\leq n}^{} $$ $$ \displaystyle \sum \left ( C_{r}-C_{s} \right )^{2} $$ is
    Solution
    Given $$\displaystyle A=\sum  \sum _{ 0\leq r\leq s\leq n } C_{ r }C_{ s }$$    ....(1)

    and  $$\displaystyle \sum _{ r=0 }^{ n } C_{ r }^{ 2 }=^{ 2n }C_{ n }$$    ....(2)

    Given expansion can be written as 
    $$\left( \sum _{ r=0 }^{ n } C_{ r } \right) ^{ 2 }=(C_{ 0 }+C_{ 1 }+C_{ 2 }+....+C_{ n })^{ 2 }$$

    Consider, $$(C_{ 0 }+C_{ 1 }+C_{ 2 }+....+C_{ n })^{ 2 }$$
    $$\Rightarrow \displaystyle (C_{ 0 }+C_{ 1 }+C_{ 2 }+....+C_{ n })^{ 2 }=\sum _{ r=0 }^{ n } C_{ r }^{ 2 }+2\sum  \sum _{ 0\leq r\leq s\leq n } C_{ r }C_{ s }$$

    We know that 
    $$C_0+C_1+C_2+....+C_n = 2^n$$

    $$\Rightarrow \displaystyle (2^n)^2=^{2n}C_{n}+2A$$    (by (1), (2))
    $$\Rightarrow \displaystyle 2^{2n}=^{2n}C_n+2A$$ 
    $$\Rightarrow \displaystyle 2A= 2^{2n}-^{2n}C_n $$     .....(3)

    Now, consider $$ \displaystyle B=\sum_{0\leq r\leq s\leq n} \displaystyle \sum \left ( C_{r}-C_{s} \right )^{2} $$ 

    $$\displaystyle ={ ({ C }_{ 0 }-{ C }_{ 1 }) }^{ 2 }+{ ({ C }_{ 0 }-{ C }_{ 2 }) }^{ 2 }+{ ({ C }_{ 0 }-{ C }_{ 3 }) }^{ 2 }+.....+{ ({ C }_{ 0 }-{ C }_{ n }) }^{ 2 }$$
    $$+ { ({ C }_{ 1 }-{ C }_{ 2 }) }^{ 2 }+{ ({ C }_{ 1 }-{ C }_{ 3 }) }^{ 2 }+....+{ ({ C }_{ 1 }-{ C }_{ n }) }^{ 2 }$$
    $$+{ ({ C }_{ 2 }-{ C }_{ 3 }) }^{ 2 }+{ ({ C }_{ 2 }-{ C }_{ 4 }) }^{ 2 }+...+{ ({ C }_{ 2 }-{ C }_{ n }) }^{ 2 }$$
    $$+....+{ ({ C }_{ n-1 }-{ C }_{ n }) }^{ 2 }$$

    $$={ { (C }_{ 0 } }^{ 2 }+{ { C }_{ 1 } }^{ 2 }-2{ C }_{ 0 }{ { C }_{ 1 } })+{ { (C }_{ 0 } }^{ 2 }+{ { C }_{ 2 } }^{ 2 }-2{ C }_{ 0 }{ { C }_{ 2 } })+{ { (C }_{ 0 } }^{ 2 }+{ { C }_{ 3 } }^{ 2 }-2{ C }_{ 0 }{ { C }_{ 3 } })+..+{ { (C }_{ 0 } }^{ 2 }+{ { C }_{ n } }^{ 2 }-2{ C }_{ 0 }{ { C }_{ n } })+$$
    $${ { (C }_{ 1 } }^{ 2 }+{ { C }_{ 2 } }^{ 2 }-2{ C }_{ 1 }{ { C }_{ 2 } })+{ { (C }_{ 1 } }^{ 2 }+{ { C }_{ 3 } }^{ 2 }-2{ C }_{ 1 }{ { C }_{ 3 } })+....+{ { (C }_{ 1 } }^{ 2 }+{ { C }_{ n } }^{ 2 }-2{ C }_{ 1 }{ { C }_{ n } })+$$
    $${ { (C }_{ 2 } }^{ 2 }+{ { C }_{ 3 } }^{ 2 }-2{ C }_{ 2 }{ { C }_{ 3 } })+{ { (C }_{ 2 } }^{ 2 }+{ { C }_{ 4 } }^{ 2 }-2{ C }_{ 2 }{ { C }_{ 4 } })+...+{ { (C }_{ 2 } }^{ 2 }+{ { C }_{ n } }^{ 2 }-2{ C }_{ 2 }{ { C }_{ n } })+$$
    $$....+{ { (C }_{ n-1 } }^{ 2 }+{ { C }_{ n } }^{ 2 }-2{ C }_{ n-1 }{ { C }_{ n } })$$

    $$\Rightarrow \displaystyle B=n{ { (C }_{ 0 } }^{ 2 }+{ { C }_{ 1 } }^{ 2 }+...+{ { C }_{ n } }^{ 2 })-2\sum  \sum _{ 0\leq r\leq s\leq n } C_{ r }C_{ s }$$

    $$\Rightarrow B=n(^{2n}C_n)-2A$$      (by(2))
    $$\Rightarrow B=n(^{2n}C_n)-2^{2n}+^{2n}C_n$$   (by (3))
    $$\Rightarrow B=(n+1)^{2n}C_n -2^{2n}$$
  • Question 6
    1 / -0
    The value of the expression $$\displaystyle \frac{1 + 4\:.\:343 + 7\:.\:4 + 2\:.\:3\:.\:49 + 7\:.\:343}{16 + 2^6\:.\:3^1 + 2^{5}\:.\:3^{3} + 2^{6}\: . \: 3^{3} + 2^{4}\:.\:3^{4}}$$ equal
    Solution
    $$\displaystyle \frac{1 + 4\:.\:343 + 7\:.\:4 + 2\:.\:3\:.\:49 +

    7\:.\:343}{16 + 2^6\:.\:3^1 + 2^{5}\:.\:3^{3} + 2^{6}\: . \: 3^{3}

    + 2^{4}\:.\:3^{4}}$$

    Above expression can be written as

    $$\dfrac{\>^4C_0\cdot1^4 + \>^4C_1\cdot1^3\cdot7 + \>^4C_2\cdot 1^2\cdot 7^2 + \>^4C_3\cdot 1\cdot 7^3 + \>^4C_4\cdot7^4}{\>^4C_0\cdot2^4 + \>^4C_1\cdot2^3\cdot6 + \>^4C_2\cdot 2^2\cdot 6^2 + \>^4C_3\cdot 2\cdot 6^3 + \>^4C_4\cdot6^4}$$

    $$= \dfrac{(1+7)^4}{(2+6)^4} = 1$$
  • Question 7
    1 / -0
    If in the expansion of $${ \left( { x }^{ 3 }-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ n }$$,
    $$n\in N$$, sum of coefficient of $${ x }^{ 5 }$$ and $${ x }^{ 10 }$$ is $$0$$, then value of $$n$$ is
    Solution
    $$(r+1)$$th term in the expansion of
    $${ \left( { x }^{ 3 }-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ n }$$ is
    $${ _{  }^{ n }{ C } }_{ r }{ \left( { x }^{ 3 } \right)  }^{ n-r }{ \left( -\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ r }={ _{  }^{ n }{ C } }_{ r }{ (-1) }^{ r }{ x }^{ 3n-5r }\quad $$
    For coefficient of $${ x }^{ 5 }$$, we set $$3n-5r=5$$ $$\Rightarrow \quad r=\cfrac { 3n-5 }{ 5 }=p \quad $$ (say) and for coefficient of $${ x }^{ 10 }$$, we set
    $$3n-5r=10$$ $$\Rightarrow \quad r=\cfrac { 3n-10 }{ 5 } =q$$ (say)
    Note that $$p-q=1$$. We are given
    $${ _{  }^{ n }{ C } }_{ p }{ (-1) }^{ p }+{ _{  }^{ n }{ C } }_{ q }{ (-1) }^{ q }=0$$
    $$\Rightarrow { _{  }^{ n }{ C } }_{ p }{ (-1) }^{ p }+{ _{  }^{ n }{ C } }_{ p-1 }{ (-1) }^{ p-1 }=0$$
    $$\Rightarrow { _{  }^{ n }{ C } }_{ p }={ _{  }^{ n }{ C } }_{ p-1 }\quad \Rightarrow \quad n-p=p-1$$
    $$\Rightarrow n=2p-1\quad \Rightarrow \quad p=\cfrac { n+1 }{ 2 } $$
    Thus, $$\cfrac { n+1 }{ 2 } =\cfrac { 3n-5 }{ 5 } \quad \Rightarrow 5n+5=6n-10\quad $$
    $$\Rightarrow 15=n$$
  • Question 8
    1 / -0
    If $${ S }_{ n }=1+q+{ q }^{ 2 }+{ q }^{ 3 }+...+{ q }^{ n }$$ and $$\displaystyle { S' }_{ n }=1+\left( \frac { q+1 }{ 2 }  \right) +{ \left( \frac { q+1 }{ 2 }  \right)  }^{ 2 }+...+{ \left( \frac { q+1 }{ 2 }  \right)  }^{ n },q\neq 1$$ then $$^{ n+1 }{ { C }_{ 1 } }+^{ n+1 }{ { C }_{ 2 } }.{ S }_{ 1 }+^{ n+1 }{ { C }_{ 3 } }.{ S }_{ 2 }+...+^{ n+1 }{ { C }_{ n+1 } }.{ S }_{ n }=$$
    Solution
    $$S_n$$=$$\dfrac{q^{n+1}-1}{q-1}$$       summation of g.p
    $$^{n+1}{C}_{1}$$+$$^{n+1}{C}_{2}$$$$\dfrac{q^2-1}{q-1}$$+$$^{n+1}{C}_{3}$$$$\dfrac{q^3-1}{q-1}$$+..................+$$^{n+1}{C}_{n+1}$$$$\dfrac{q^{n+1}-1
    }{q-1}$$
    $$\dfrac{^{n+1}{C}_{0}}{q-1}$$-$$^{n+1}{C}_{1}$$$$\dfrac{q-1}{q-1}$$+$$^{n+1}{C}_{2}$$$$\dfrac{q^2-1}{q-1}$$+$$^{n+1}{C}_{3}$$$$\dfrac{q^3-1}{q-1}$$+..................+$$^{n+1}{C}_{n+1}$$$$\dfrac{q^{n+1}-1
    }{q-1}$$-
    $$\dfrac{^{n+1}{C}_{0}}{n-1}$$
    ($$\dfrac{^{n+1}{C}_{0}}{q-1}$$+$$^{n+1}{C}_{1}$$$$\dfrac{q}{q-1}$$+$$^{n+1}{C}_{2}$$$$\dfrac{q^2}{q-1}$$+$$^{n+1}{C}_{3}$$$$\dfrac{q^3}{q-1}$$+..................+$$^{n+1}{C}_{n+1}$$$$\dfrac{q^{n+1}
    }{q-1}$$)-(
    $$\dfrac{^{n+1}{C}_{0}}{q-1}$$+$$^{n+1}{C}_{1}$$$$\dfrac{}{q-1}$$+$$^{n+1}{C}_{2}$$$$\dfrac{}{q-1}$$+$$^{n+1}{C}_{3}$$$$\dfrac{}{q-1}$$+..................   +$$^{n+1}{C}_{n+1}$$$$\dfrac{}{q-1}$$)
    =$$\dfrac{{(1+q)}^{n+1}}{q-1}$$-$$\dfrac{2^{n+1}}{q-1}$$
    =$$2^n(\dfrac{{(\dfrac{1+q}{2}})^{n+1}}{\dfrac{q-1}{2}}$$-$$\dfrac{2}{q-1})$$
    =$$2^n(\dfrac{{(\dfrac{1+q}{2}})^{n+1}}{\dfrac{q-1}{2}}$$-$$\dfrac{1}{\dfrac{q-1}{2}})$$
    =$$2^n$$$$S'_n$$
    and$$S'_n$$=$$(\dfrac{{(\dfrac{1+q}{2}})^{n+1}}{\dfrac{q-1}{2}}$$$$-$$$$\dfrac{1}{\dfrac{q-1}{2}})$$                summation of g.p
  • Question 9
    1 / -0
    $$\left( _{  }^{ m }{ { C }_{ 0 }^{  } }+^{ m }{ { C }_{ 1 }^{  } }-^{ m }{ { C }_{ 2 }^{  } }-^{ m }{ { C }_{ 3 }^{  } } \right) +\left( ^{ m }{ { C }_{ 4 }^{  } }+^{ m }{ { C }_{ 5 }^{  } }-^{ m }{ { C }_{ 6 }^{  } }-^{ m }{ { C }_{ 7 }^{  } } \right) +...=0$$ if and only if for some positive integer $$k, m=$$
    Solution
    Consider $${ \left( \cos { \theta  } -i\sin { \theta  }  \right)  }^{ m }=^{ m }{ { C }_{ 0 }\cos ^{ m }{ \theta  } - }^{ m }{ { C }_{ 1 }\cos ^{ m-1 }{ \theta  } i }\sin { \theta  } +...+^{ m }{ { C }_{ m } }{ \left( -i\sin { \theta  }  \right)  }^{ m }$$   ....(1)
    $${ \left( \cos { \theta  } +i\sin { \theta  }  \right)  }^{ m }=^{ m }{ { C }_{ 0 }\cos ^{ m }{ \theta  } + }^{ m }{ { C }_{ 1 }\cos ^{ m-1 }{ \theta  } i }\sin { \theta  } +...+^{ m }{ { C }_{ m } }{ \left( i\sin { \theta  }  \right)  }^{ m }$$   ....(2)
    Adding (1) and (2), we get
    $$2\cos { m\theta =2\left[ ^{ m }{ { C }_{ 0 }\cos ^{ m }{ \theta  } -^{ m }{ { C }_{ 2 }\cos ^{ m-2 }{ \theta  } \sin ^{ 2 }{ \theta ... }  } } \right]  } $$   ...(3)
    Subtracting (3) and (4), we get
    $$2i\sin { m\theta  } =2i\left[ ^{ m }{ { C }_{ 1 }\cos ^{ m-1 }{ \theta  } i }\sin { \theta  } -^{ m }{ { C }_{ 3 }\cos ^{ m-3 }{ \theta  } \sin ^{ 3 }{ \theta ... }  } \right] $$    ....(4)
    Adding (3) and (4), we get
    $$\cos { m\theta  } +\sin { m\theta  } \\ =\left[ ^{ m }{ { C }_{ 0 }\cos ^{ m }{ \theta  } + }^{ m }{ { C }_{ 1 }\cos ^{ m-1 }{ \theta  } i }\sin { \theta  } -^{ m }{ { C }_{ 2 }\cos ^{ m-2 }{ \theta  } \sin ^{ 2 }{ \theta - }  }^{ m }{ { C }_{ 3 }\cos ^{ m-3 }{ \theta  } \sin ^{ 3 }{ \theta ... }  } \right] $$
    $$\displaystyle \Rightarrow \sqrt { 2 } \sin { \left( m\theta +\frac { \pi  }{ 4 }  \right)  } \\ =\left[ ^{ m }{ { C }_{ 0 }\cos ^{ m }{ \theta  } + }^{ m }{ { C }_{ 1 }\cos ^{ m-1 }{ \theta  } i }\sin { \theta  } -^{ m }{ { C }_{ 2 }\cos ^{ m-2 }{ \theta  } \sin ^{ 2 }{ \theta - }  }^{ m }{ { C }_{ 3 }\cos ^{ m-3 }{ \theta  } \sin ^{ 3 }{ \theta ... }  } \right] $$
    Putting $$\displaystyle \theta =\frac { \pi  }{ 4 } $$, we get
    $$\displaystyle \sqrt { 2 } \sin { \left( \frac { \left( m+1 \right) \pi  }{ 4 }  \right)  } =\frac { 1 }{ { 2 }^{ \frac { m }{ 2 }  } } [\left( ^{ m }{ { C }_{ 0 } }+^{ m }{ { C }_{ 1 }-^{ m }{ { C }_{ 2 }-^{ m }{ { C }_{ 3 } } } } \right) \\ +\left( ^{ m }{ { C }_{ 4 }+^{ m }{ { C }_{ 5 }-^{ m }{ { C }_{ 6 } }-^{ m }{ { C }_{ 7 } } } } \right) +...+\left( ^{ m }{ { C }_{ m-3 }+^{ m }{ { C }_{ m-2 }-^{ m }{ { C }_{ m-1 }-^{ m }{ { C }_{ m } } } } } \right) ]$$
    Hence $$m+1=4k$$, for given quantity to be $$0$$.
    $$\Rightarrow m=4k-1$$ where $$k\in N$$
  • Question 10
    1 / -0
    The value of $$\displaystyle ^{20}C_{0}+ ^{20}C_{1}+^{20}C_{2}+^{20}C_{4}+^{20}C_{12}+^{20}C_{13}+^{20}C_{14}+^{20}C_{15} $$ is
    Solution
    $$ ^{20}C_{0}+^{20}C_{1}+^{20}C_{2}+^{20}C_{4}+^{20}C_{12}+^{20}C_{13}+^{20}C_{14}+^{20}C_{15} $$
    $$ \because ^{n}C_{x} = ^{n}C_{n-x} $$
    $$ \because ^{20}C_{15} = ^{20}C_{5} $$
    $$ ^{20}C_{14} = ^{20}C_{6} $$
    $$ ^{20}C_{13} = ^{20}C_{7} $$
    $$ ^{20}C_{12} = ^{20}C_{8} $$
    $$ \therefore $$ we get 
    $$ ^{20}C_{0}+C_{1}+C_{2}+C_{4}+C_{5}+C_{6}+C_{7}+C_{8} $$
    $$ \because ^{20}C_{0}+C_{1}+...C_{8}+C_{9}+C_{11}+...^{20}C_{20} = 2^{20} $$
    $$ 2\left \{ C_{0}+C_{1}+...C_{9} \right \}+C_{10} = 2^{20} $$
    $$ 2\left \{ C_{0}+C_{1}+...C_{8} \right \}+^{2}C_{9}+C_{10} = 2^{20} $$
    $$ \therefore C_{0}+C_{1}....C_{8} = \dfrac{2^{20}-(^{2}C_{9}+C_{10})}{2} $$
    $$ = 2^{19}-\dfrac{(^{20}C_{10}+2^{20}C_{9})}{2} $$
    Ans. (B)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now