Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    $$\sum { { \left( -1 \right)  }^{ r } } ~ { _{  }^{ n }{ C } }_{ r }\cfrac { 1+r\log _{ e }{ 10 }  }{ { \left( 1+\log _{ e }{ { 10 }^{ n } }  \right)  }^{ r } } $$

  • Question 2
    1 / -0

    If $$\left\{ x \right\}$$  denotes the fraction part of $$'x'$$, then $$\left\{ \dfrac { { 3 }^{ 1001 } }{ 82 }  \right\} =$$

  • Question 3
    1 / -0

    The coefficient of $$x^{160}$$ in the expansion of $$\displaystyle (x^8 + 1)^{60} \left( x^{12} + 3x^4 + \frac{3}{x^4} + \frac{1}{x^{12}} \right)^{-10}$$ is

  • Question 4
    1 / -0

    If $$C_r \, = \, (^{100 C _ r }) , then \,  E = \sum_{r = 0 }^{n + 4 } (-1)^r  \, c_r \, c_{r + 1}$$

  • Question 5
    1 / -0

    The coefficient of $${x^6}.{y^{ - 2}}$$ in the expansion of $${\left( {\dfrac{{{x^2}}}{y} - \dfrac{y}{x}} \right)^{12}}$$ is

  • Question 6
    1 / -0

    The co-efficient of $${x^{53}}$$ in the expression $$\sum\limits_{m = 0}^{100} {{}^{100}} {c_m}{(x - 3)^{100 - m}}{2^m}\,$$ is

  • Question 7
    1 / -0

    If $${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}\,\,$$ then the sum of the series $$\,1 + {}^n{C_r} + {}^n + 1{C_r} + {}^{n + 2}{C_3} + ......... + {}^{n + r - 1}{C_r}$$ is 

  • Question 8
    1 / -0

    In the expression of $$\left( {{2^x} + \frac{1}{{{4^x}}}} \right)^n\,$$ ratio  of 2nd and third terms is given by$$\,{t_3}/{t_2} = 7$$ and the sum of the co-efficients of 2nd and 3rd term is $$36,$$ then the value of $$x$$ is 

  • Question 9
    1 / -0

    The coefficient $${x^n}$$ in the expression of $${\left( {1 + x} \right)^{2n}}$$ and $${\left( {1 + x} \right)^{2n - 1}}$$ are in the ratio.

  • Question 10
    1 / -0

    The coefficient of $$x^{8}$$ in the polynomial $$\left( x-1 \right) \left( x-2 \right) \left( x-3 \right) ...\left( x-10 \right) $$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now