Self Studies

Binomial Theorem Test - 65

Result Self Studies

Binomial Theorem Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coefficient of $${x}^{24}$$ in the expansion of $$ { \left( 1+{ x }^{ 2 } \right)  }^{ 12 }\left( 1+{ x }^{ 12 } \right) \left( 1+{ x }^{ 24 } \right)$$ is
    Solution

  • Question 2
    1 / -0
    Number of irrational terms in the expansion of $$(\sqrt {2}+\sqrt {3})^{15}$$ are 
    Solution

  • Question 3
    1 / -0
    The coefficient of $$x^{n}$$ in $$\dfrac {x+1}{(x-1)^{2}(x-2)}$$ is
    Solution

  • Question 4
    1 / -0
    If the coefficient of $${ x }^{ 2 }{ y }^{ 3 }{ z }^{ 4 }$$ in $$\left( x+y+z \right) ^{ n }$$ is A, then the coefficient of $${ x }^{ 4 }{ y }^{ 4 }{ z }$$ 
    Solution

  • Question 5
    1 / -0
    The term independent of $x$ in the expansion of $$\left( \sqrt { \left( \frac { x } { 3 } \right) } + \sqrt { \left( \frac { 3 } { 2 x ^ { 2 } } \right) } \right) ^ { 10 }$$ is:-
  • Question 6
    1 / -0
    The 4th term in the expansion of $${ \left( \sqrt { x } +\frac { 1 }{ x }  \right)  }^{ 2 }$$ is
    Solution

    $$\left(\sqrt{x}+\frac{1}{x}\right)^{12}$$

    $$T_4={}^{12} C_{3}(\sqrt{x})^{12-3}\left(\frac{1}{x}\right)^{3}$$

    $$={12 C_{3}(\sqrt{x})^{9}\left(x^{-3}\right)}$$

    $$= \frac{12 !}{9! \times 3 !}(x)^{\frac{3}{2}}$$

    = $$220 x^{\frac{3}{2}}=$$ Ans

    Option (b)

  • Question 7
    1 / -0
    In how many terms in the expansion of $$(x^{1/5}+y^{1/10})^{55}$$ do not have fractional power of the variable :
  • Question 8
    1 / -0
    In the expansion of $$(a-b)^{n},n\ge 5$$, if the sum of the $$5^{th}$$ and $$6^{th}$$ terms is zero, then $$a/b$$=
  • Question 9
    1 / -0
    The value of the sum $$\sum _{ j=0 }^{ 8 }{8 \choose j}{ \frac { 1 }{ (j+1)(j+2) }  }  $$ is
    Solution

  • Question 10
    1 / -0
    Find the number of terms in the expression $$5x^ {2}-x^ {2}y+2xy+7$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now