Self Studies

Binomial Theorem Test - 67

Result Self Studies

Binomial Theorem Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the co-efficients of all odd degree terms in the expansion of $${ \left( x+\sqrt { { x }^{ 3 }-1 }  \right)  }^{ 5 }+{ \left( x-\sqrt { { x }^{ 3 }-1 }  \right)  }^{ 5 }$$, $$\left(x>1\right)$$
    Solution

    $$\left(x+\sqrt{x^{3}-1}\right)^{5}+\left(x-\sqrt{x^{3}-1}\right)^{5}$$

    $${ }^{5} c_{r} x^{5-r}\left(\sqrt{x^{3}-1}\right)^{r}=$$ General term

    $${ }^{5} c_{r} x^{5-r}\left(-\sqrt{x^{3}-1}\right)^{r}=$$ General term

    For degree terms

    $$2\left[{ }^{5} C_{0} \cdot x^{5}+{ }^{5} c_{2} x^{3}\left(x^{3}-1\right)+{ }^{5} c_{4} x\left(x^{3}-1\right)^{2}\right.]$$

    $$2\left(x^{5}+10 x^{6}-10 x^{3}+5 x^{7}-10 x^{4}+5 x\right]$$

    Considering only odd degree term,

    $$=2(1-10+5+5)$$

    =2 Ans

    option (a)

  • Question 2
    1 / -0
    If the number of terms in the expansion of $${ \left( 1-\dfrac { 2 }{ X } +\dfrac { 4 }{ { X }^{ 2 } }  \right)  }^{ n },x\neq 0,$$ is 28, then sum coefficients of all the terms in this expansion,is:
    Solution

  • Question 3
    1 / -0
    If $$\left | x \right |$$ < 1, then the coefficient of $$x^n$$ in the expansion of $$(1 + x + x^2 + x^3 + .....)^2$$ is
    Solution

  • Question 4
    1 / -0
    Number of terms which are rational in the expansion of $$(\sqrt[4]{5}+\sqrt[3]{4})^{100}$$ is 
    Solution
    General term

    $$T_{r+1}={}^{100} C_{2}(5)^{\frac{100-r}{4}} \cdot(4)^{\frac{r}{3}}$$

    In this case, for rational tems., power of $$5 and 4$$ should be integer
    $$\therefore \frac{100-r}{4} and \frac{r}{3}$$ should be integers

    For $$r=6,0,12 , 24,30,36,42,4.8,54,60$$ 

    powers will be integer. 

    $$\therefore \quad Ans =10$$

    option (a)
  • Question 5
    1 / -0
    The sum of rational terms in $$(\sqrt{2}+\sqrt[3] {3} +\sqrt[6] {5})^{10}$$
    Solution

  • Question 6
    1 / -0
    If $${ (1+x-{ 2x }^{ 2 }) }^{ 6 }=1+{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }+{ C }_{ 3 }{ x }^{ 3 }+...+{ C }_{ 12 }{ x }^{ 12 }$$, then the value of $${ C }_{ 2 }+{ C }_{ 4 }+{ C }_{ 6 }+...+{ C }_{ 12 }$$ is
    Solution

  • Question 7
    1 / -0
    The sum of the coefficients of all the even power of $$x$$ in the expansion of $${(2{x^2} - 3x + 1)^{11}}$$
    Solution

  • Question 8
    1 / -0
    The number of terms which are free from radical signs in the expansion of $$\left( \frac { 1 }{ { y }^{ 4 } } +\frac { 1 }{ { y }^{ 8 } }  \right) $$ is:
    Solution

  • Question 9
    1 / -0
    The coefficient of $${ x }^{ 49 }$$ in the expansion of $$(x-1)(x-\frac { 1 }{ 2 } )(x-\frac { 1 }{ 2^{ 2 } } ).....(x-\frac { 1 }{ 2^{ 49 } } )$$ is equal to -
    Solution

  • Question 10
    1 / -0
    If sum of the coefficient in the expression of $${ (-3{ x }^{ 2 }+\frac { 2 }{ x } ) }^{ 2n+1 }$$ is 'a' then the values of 'b' for which roots of the equation $${ x }^{ 2 }+bx+6a=0$$ are integral
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now