Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    Find the sum of the following geometric series:
    $$ 1,-a,a^2,-a^3,...$$ to n terms $$\left ( a\neq 1 \right )$$

  • Question 2
    1 / -0

    In a sequence, $$a_{n}=n^{2}-1$$ then $$a_{n+1} $$ is equal to

  • Question 3
    1 / -0

    Sum of the series 
    $$S=1+\dfrac{1}{2} \left ( 1+2 \right )+\dfrac{1}{3}\left ( 1+2+3 \right )+\dfrac{1}{4}\left ( 1+2+3+4 \right )+...$$ upto $$20$$ terms is

  • Question 4
    1 / -0

    The sum to infinity of $$\displaystyle\frac{1}{7}+\frac{2}{7^2}+\frac{1}{7^3}+\frac{2}{7^4}+...$$is

  • Question 5
    1 / -0

    $$3.6+6.9+9.12+...+3\mathrm{n}(3\mathrm{n}+3)=$$

  • Question 6
    1 / -0

    $$2\cdot1^{2}+3\cdot2^{2}+4\cdot3^{2}+\dots $$ up to $$n$$ terms $$=$$

  • Question 7
    1 / -0

    $$1.4+2.5+...+\mathrm{n}(\mathrm{n}+3)=$$

  • Question 8
    1 / -0

    $$ 1+ 3 + 6 + 10 + ...+\displaystyle \frac{(n-1)n}{2}+\frac{n(n+1)}{2}=$$

  • Question 9
    1 / -0

    If $$S_1,S_2$$ and $$S_3$$. are the sums of first n natural  numbers, their squares and their cubes respectively, then $$S_3\left (1+8S_1  \right )=$$

  • Question 10
    1 / -0

    $$ 1.3+3.5+5.7+...+(2\mathrm{n}-1)(2\mathrm{n}+1)=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now