Self Studies

Sequences and Series Test - 17

Result Self Studies

Sequences and Series Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the sum of the following geometric series:
    $$ 1,-a,a^2,-a^3,...$$ to n terms $$\left ( a\neq 1 \right )$$
    Solution
    Let $$S_n $$ denote the sum of n terms of the G.P. $$ 1-a, a^2, -a^3,...$$

    Cleraly, the given series is a $$G.P.$$ with first term$$=a=1$$ and common ratio$$=r=-a$$

    Then,
    $$ S_n = 1 \left \{ \dfrac{\left ( -a \right )^n-1}{-a-1} \right \} = \dfrac{1-\left ( -1 \right )^n a^n}{1+a}$$
  • Question 2
    1 / -0
    In a sequence, $$a_{n}=n^{2}-1$$ then $$a_{n+1} $$ is equal to
    Solution
    Given,

    $$a_n=n^2-1$$

    $$a_{n+1}=(n+1)^2-1$$

    $$=n^2+2n+1-1$$

    $$=n^2+2n$$
  • Question 3
    1 / -0
    Sum of the series 
    $$S=1+\dfrac{1}{2} \left ( 1+2 \right )+\dfrac{1}{3}\left ( 1+2+3 \right )+\dfrac{1}{4}\left ( 1+2+3+4 \right )+...$$ upto $$20$$ terms is
    Solution
    The general term for the above series is $$T_{n}=\dfrac{\sum n}{n}$$$$=\dfrac{n(n+1)}{2n}$$$$=\dfrac{n+1}{2}$$

    Hence, $$S_{20}= \displaystyle \sum_{n=1} ^{n=20} T_{n}$$

    $$\displaystyle \sum_{n=1} ^{n=20} \left (\dfrac{n+1}{2}\right)$$

    $$\Rightarrow \left [1+\dfrac{3}{2}+\dfrac{4}{2}+.....+\dfrac{21}{2} \right ]$$

    $$\Rightarrow \left [\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+.....+\dfrac{21}{2} \right ]$$

    It is an A.P. with $$a=\dfrac{2}{2}, d=\dfrac{1}{2}, \ and \ n=20$$

    We know that the sum of $$n$$ terms of A.P. is $$S_n=\dfrac{n}{2}\left [2a+(n-1)d \right]$$

    $$\therefore \ S_{20}=\dfrac{20}{2}\left [2\times \dfrac{2}{2}+(20-1)\dfrac{1}{2} \right]$$

    $$\Rightarrow S_{20}=10\left[2+\dfrac{19}{2}\right]=\dfrac{230}{2}=115$$

    Hence, the answer is $$115$$
  • Question 4
    1 / -0
    The sum to infinity of $$\displaystyle\frac{1}{7}+\frac{2}{7^2}+\frac{1}{7^3}+\frac{2}{7^4}+...$$is
    Solution
    $$\dfrac{1}{7}+\dfrac{2}{7^{2}}+\dfrac{1}{7^{3}}+\dfrac{2}{7^{4}}...\infty$$

    $$=(\dfrac{1}{7}+\dfrac{1}{7^{3}}+\dfrac{1}{7^{5}}+...\infty)+(\dfrac{2}{7^{2}}+\dfrac{2}{7^{4}}+\dfrac{2}{7^{6}}+...\infty)$$

    $$=\dfrac{\dfrac{1}{7}}{1-\dfrac{1}{7^{2}}}+2\left[\dfrac{\dfrac{1}{7^{2}}}{1-\dfrac{1}{7^{2}}}\right]$$  $$[$$Sum of infinite GP $$ =\cfrac { a }{ 1-r }]$$


    $$=\dfrac{7}{48}+\dfrac{2}{48}$$

    $$=\dfrac{9}{48}$$

    $$=\dfrac{3}{16}$$
  • Question 5
    1 / -0
    $$3.6+6.9+9.12+...+3\mathrm{n}(3\mathrm{n}+3)=$$
    Solution
    $$\sum _{ k=1 }^{ n }{3k(3k+3)}=9\sum _{ k=1 }^{ n }{k^2} +9\sum _{ k=1 }^{ n }{k}$$

    $$=9\times \dfrac{n(n+1)(2n+1)}{6}+9\times \dfrac{n(n+1)}{2}$$

    $$=\dfrac{3}{2}n(n+1)(2n+1+3)$$

    $$=3n(n+1)(n+2)$$
  • Question 6
    1 / -0
    $$2\cdot1^{2}+3\cdot2^{2}+4\cdot3^{2}+\dots $$ up to $$n$$ terms $$=$$
    Solution
    Let $$S$$ be the given sequence.
    General term, $$t_{r}=(r+1)\cdot r^2=r^3+r^2$$
    Thus, the sum would be,
    $$S=\sum  r^3 +\sum r^2 $$
    $$\therefore S=\dfrac{n^2(n+1)^2}{4} + \dfrac{n(n+1)(2n+1)}{6}$$
    Hence,
    $$S=\dfrac{n(n+1)(3n^2+7n+2)}{12}$$
    or
    $$S=\dfrac{n(n+1)(n+2)(3n+1)}{12}$$
  • Question 7
    1 / -0
    $$1.4+2.5+...+\mathrm{n}(\mathrm{n}+3)=$$
    Solution
    $$\sum _{ k=1 }^{ n }{k(k+3)}=\sum _{ k=1 }^{ n }{k^2} +3\sum _{ k=1 }^{ n }{k}$$
    $$= \dfrac{n(n+1)(2n+1)}{6}+3\times \dfrac{n(n+1)}{2}$$
    $$=\dfrac{n(n+1)}{2}(\dfrac{2n+1}{3}+3)$$
    $$=\dfrac{n(n+1)(n+5)}{3}$$
  • Question 8
    1 / -0
    $$ 1+ 3 + 6 + 10 + ...+\displaystyle \frac{(n-1)n}{2}+\frac{n(n+1)}{2}=$$
    Solution
    We can see that $${ T }_{ n }=\dfrac { n\left( n+1 \right)  }{ 2 } $$
    hence $$\Rightarrow { S }_{ n }=\sum _{ n=1 }^{ n }{ { T }_{ n } } \\ \Rightarrow { S }_{ n }=\sum _{ n=1 }^{ n }{ \dfrac { n\left( n+1 \right)  }{ 2 }  } =\dfrac { 1 }{ 2 } \left( \sum _{ n=1 }^{ n }{ { n }^{ 2 } } +\sum _{ n=1 }^{ n }{ n }  \right) \\ =\dfrac { 1 }{ 2 } \left[ \dfrac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } +\dfrac { n\left( n+1 \right)  }{ 2 }  \right] \\ =\dfrac { 1 }{ 2 } \left[ \dfrac { n\left( n+1 \right) \left( 2n+1+3 \right)  }{ 6 }  \right] \\ =\dfrac { 2 }{ 2 } \left[ \dfrac { n\left( n+1 \right) \left( n+2 \right)  }{ 6 }  \right] \\ =\dfrac { n\left( n+1 \right) \left( n+2 \right)  }{ 6 } $$
  • Question 9
    1 / -0
    If $$S_1,S_2$$ and $$S_3$$. are the sums of first n natural  numbers, their squares and their cubes respectively, then $$S_3\left (1+8S_1  \right )=$$
    Solution
    $$ S_1\; =\; \dfrac{n(n+1)}{2} $$  
    $$ 1+ 8S_1 = 4n(n+1) +1 = (2n+1)^2$$
    $$ S_2 = \dfrac{n(n+1)(2n+1)}{6} $$
    $$\displaystyle S_3 = \left(\frac{n(n+1)}{2} \right)^2 $$

    Now,
     $$ S_3 \times (1+ 8 S_1) $$
    $$= \dfrac{(2n+1)^2(n^2)(n+1)^2}{4} $$
    $$= 9 \times \left (\dfrac{n(n+1)(2n+1)}{6} \right)^2 $$ 
    $$ = 9 (S_2)^2$$
    Hence, option C is correct.
  • Question 10
    1 / -0
    $$ 1.3+3.5+5.7+...+(2\mathrm{n}-1)(2\mathrm{n}+1)=$$
    Solution
    General term : $$(2k-1)(2k+1)$$

    $$\sum_{k=1}^{n}(2k-1)(2k+1)$$$$=\sum_{k=1}^{n}(4k^2-1)$$

    $$=\sum_{k=1}^{n}(4k^2)-\sum_{k=1}^{n}(1)$$

    By using the formula,
    $$=4\frac{n(n+1)(2n+1)}{6}-n$$

    On simplifying, we get the desired result !

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now