Self Studies

Sequences and Series Test - 18

Result Self Studies

Sequences and Series Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the series $$1^2 - 2^2 + 3^2 - 4^2 + .......... - 1000^2 + 1001^2$$ is
    Solution
    We would like to regroup the series as follows:
    $$ 1^2+(3^2-2^2)+(5^2-4^2)+....(1001^2-1000^2) $$
    $$a^2-b^2=(a+b)(a-b)$$ , in our case $$a-b=1$$
    Hence,
    $$1+5+9+13+... +2001$$
    There are $$501$$ terms, then
    Sum$$=501\times1001$$
  • Question 2
    1 / -0
     $$ 1.4+2.7+3.10+...+\mathrm{n}(3\mathrm{n}+1)=$$
    Solution
    $$\sum _{ k=1 }^{ n }{ n(3n+1) }= \sum _{ k=1 }^{ n }{ 3n^2+n }=3\sum _{ k=1 }^{ n }{n^2 }+\sum _{ k=1 }^{ n }{ n }$$

    $$=3\times \dfrac{n(n+1)(2n+1)}{6} + \dfrac{n(n+1)}{2}$$

    $$ = \cfrac{n(n+1)(2n+1)}2 + \cfrac{n(n+1)}2$$

    $$=n(n+1)^2$$
  • Question 3
    1 / -0
    The sum of $$7$$ terms of the series $$1^2-2^2+3^2-4^2+5^2-6^2+...$$ is 
    Solution
    We can see that first 6 terms taken in pair and is equal to  $$-3+(-7)+(-11)$$
    So the sum will be $$-21+7^2$$
    $$=28$$
  • Question 4
    1 / -0
     $$1^{2}+1+2^{2}+2+3^{2}+3+\ldots..+n^{2}+n=$$
    Solution
    $$S=\Sigma n^2 + \Sigma n $$
    Therefore,
    $$S=\dfrac{n(n+1)(2n+1)}6+\dfrac{n(n+1)}2 $$
    Hence,
    $$S=\dfrac{n(n+1)(n+2)}3 $$
  • Question 5
    1 / -0
    $$\displaystyle \frac{1.2^{2}+2.3^{2}+3.4^{2}+.\cdot.\cdot.\cdot.\cdot+n(n+1)^{2}}{1^{2}.2+2^{2}.3+3^{2}.4++n^{2}(n+1)}=$$
    Solution
    Numerator : $$\sum_{k=1}^n k(k+1)^2$$ $$ = \sum_{k=1}^n (k^3+2k^2+k) $$
    Denominator : $$\sum_{k=1}^n k^2(k+1)$$ = $$ \sum_{k=1}^n (k^3 + k^2) $$
    On evaluating each sum we get
    Numerator = $$n(n+1)(\frac{n(n+1)}{4} + \frac{2n+1}{3} + \frac{1}{2}) $$
    Denominator = $$n(n+1)(\frac{n(n+1)}{4}+\frac{2n+1}{6}) $$
    Now,
    $$Answer=\frac{numerator}{denominator}=\frac{n(n+1)}{n(n+1)}\times\frac{(n+2)(3n+5)}{(n+2)(3n+1)}=\frac{3n+5}{3n+1}$$
    Hence, option 'B' is correct.

  • Question 6
    1 / -0
    $$1^3+1^2+1+2^{3}+2^{2}+2+3^{3}+3^{2}+3+ ...  3\mathrm{n} $$ terms $$=$$ 
    Solution
    $$S=\Sigma r^3 +\Sigma r^2 +\Sigma r$$

    $$S=\dfrac{n^2(n+1)^2}4 +\dfrac{n(n+1)(2n+1)}6 +\dfrac{n(n+1)}2$$

    $$S=\dfrac{n(n+1)(3n^2 +7n+8)}{12}$$

    Hence Option B
  • Question 7
    1 / -0
    The value of $$\sum_{r=1}^{10}\left ( 2^{r-1}+8r-3 \right )$$ is equal to



    Solution
    $$\sum_{r=1}^{10}\left ( 2^{r-1}+8r-3 \right )=\sum_{r=1}^{10}2^{r-1}+\sum_{r=1}^{10}\left ( 8r \right )-\sum_{r=1}^{10}3$$

    $$=\frac{2^{10}-1}{2-1}+\frac{8.10.11}{2}-30=1023+440-30=1433$$
  • Question 8
    1 / -0
    $$\displaystyle \frac{1^{2}}{1}+\frac{1^{2}+2^{2}}{1+2}+\frac{1^{2}+2^{2}+3^{2}}{1+2+3}+\ldots+n$$ terms $$=$$
    Solution
    We Know,
    $$\sum_{i=1}^{n} k =1 + 2 + 3 +… + n = \dfrac{n(n+1)}{2}$$  (sum of first n natural numbers)

    $$  \sum_{i=1}^{n} k^2 =1^2 + 2^2 + 3^2 +… + n^2=\dfrac{n(n+1)(2n+1)}{6}$$ (sum of squares of the first n natural numbers) 

    $$\therefore t_{r}=\dfrac {\Sigma k^2}{\Sigma k}=\dfrac {\dfrac {n(n+1)(2n+1)}{6}}{\dfrac {n(n+1)}{2}}=\dfrac {2n+1}{3}$$

    $$S=\dfrac{2}{3} \Sigma n +\dfrac{1}{3} \Sigma 1$$

    $$S=\dfrac{2}{3} {\dfrac {n(n+1)}{2}} +\dfrac{1}{3} n$$

    $$S=\dfrac {n(n+2)}{3}$$
  • Question 9
    1 / -0
    Find $$\displaystyle \sum_{n=1}^{\infty}\frac{1}{(2n-1)!}$$
    Solution

  • Question 10
    1 / -0
    Evaluate $$1.6+2.9+3.12+...+\mathrm{n}(3\mathrm{n}+3)=$$
    Solution
    $$\sum _{ k=1 }^{ n }{k(3k+3)}=3\sum _{ k=1 }^{ n }{k^2} +3\sum _{ k=1 }^{ n }{k}$$
    $$=3\times \dfrac{n(n+1)(2n+1)}{6}+3\times \dfrac{n(n+1)}{2}$$
    $$=\dfrac{n(n+1)}{2}(2n+1+3)$$
    $$=n(n+1)(n+2)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now