Self Studies

Sequences and Series Test - 21

Result Self Studies

Sequences and Series Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum of the series $$2.3.1+3.4.4+4.5.7+...$$ up to $$n$$ terms is
    Solution
    $$S=2.3.1+3.4.4+4.5.7\\ S=\sum _{ r=1 }^{ n }{ \left( r+1 \right) \left( r+2 \right) \left( 3r-2 \right)  } =\sum _{ r=1 }^{ n }{ \left( r+1 \right) \left( { 3r }^{ 2 }+4r-4 \right)  } $$
    $$\displaystyle =\sum _{ r=1 }^{ n }{ \left( { 3r }^{ 3 }+{ 7r }^{ 2 }-4 \right)  } =3{ \left( \frac { n\left( n+1 \right)  }{ 2 }  \right)  }^{ 2 }+7\left( \frac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 }  \right) -4$$
    $$\displaystyle =\frac { n }{ 12 } \left[ { 9n }^{ 3 }+{ 46n }^{ 2 }+51n-34 \right] $$
  • Question 2
    1 / -0
    Let $$\displaystyle \left ( a_{n} \right )n\geq 1$$ be an increasing sequence of positive integers such that 1.$$\displaystyle a_{2n}=a_{n}+n$$ for all $$\displaystyle n\geq 1$$ 2.if $$\displaystyle a_{n}$$ is prime, then n is a prime. Prove that $$\displaystyle a_{n}=n,$$ for all $$\displaystyle n\geq 1.$$
    Solution

    Let $$a_1=c$$. Then $$a_2=a_1+1=c+1$$,$$a_4=a_2+2=c+3$$. Since the sequence is increasing,it follows that $$a_3=c+2$$. We Prove that $$a_n=c+n1$$ for all $$ n1$$. Indeed, if $$n=2k$$ for some integer $$k$$ this follows by induction on $$k$$. Suppose that $$a_{2^k}=c+2^k1$$. Then $$a_{2^{k+1}}=a_{2.2^k}=a_{2^k}+2^k=c+2^{k+1}1$$. If $$2^k<n<2^{k+1}$$, then $$c+2^{k}1=a_{2^k}<a_{2^k+1}<...<a_n<...<a_{2^k+1}=c+2^{k+1}1$$ add this is possible only if $$a_n=c+n1$$.

    Next we prove that $$c=1$$. Suppose that $$c2$$ and let $$p<q$$ be two consecutive prime numbers greater than $$c$$. We have $$a_{qc+1}=c+qc=q$$, hence $$qc+1$$ is a prime and clearly $$qc+1p$$. It follows that for any consecutive prime numbers $$p<q$$ we have $$qc+1$$. The numbers $$(c+1)!+2,(c+1)!+3...,(c+1)!+c+1$$ are all composite, hence if $$p$$ and $$q$$ are the consecutive primes such that $$p<(c+1)!+2<(c+1)!+c+1<q$$ then $$qp>c1$$, a contradiction. It follows that $$c=0$$ and $$a_n=n$$ for all $$n1$$.

  • Question 3
    1 / -0
    Let $$\displaystyle V_{r}$$ denote the sum of the first r terms of an arithmetic progression (AP) whose first term is r and the common difference is $$\displaystyle (2r-1).$$ Let  $$\displaystyle T_{r}=V_{r+1}-V_{r}-2$$ and  $$\displaystyle Q_{r}=T_{r+1}-T_{r}$$ for $$r=1, 2, ...$$
    The sum  $$\displaystyle V_{1}+V_{2}+... +V_{n}$$ is
    Solution
    $$V_r = \dfrac{r}{2}(r+(r-1)(2r-1))$$

    $$=\dfrac{1}{2}(2r^3 - r^2 +r)$$

    $$V_1 +V_2 +V_3 +....... = \sum V_r$$

    $$\sum V_r =\dfrac{1}{2}( {2 \sum r^3 - \sum r^2 + \sum r})$$ 

    $$=\dfrac{1}{2} (2\times \dfrac{r^2 (r+1)^2}{4} - \dfrac{r (r+a)(2r+1)}{6} + \dfrac{r(r+1)}{2})$$

    $$= \dfrac{1}{12} {r (r+1)(3r^2+r+2)}$$

    for $$r=n$$ (i.e. sum upto n terms)

    $$ = \dfrac{1}{12}{n(n+1)(3n^2 +n+2)}$$
  • Question 4
    1 / -0
    The sum of n terms of $$1^{2}\, +\, (1^{2}\, +\, 2^{2})\, +\, (1^{2}\, +\, 2^{2}\, +\, 3^{2})\, +\, ....$$.
    Solution
    $$S={ 1 }^{ 2 }+\left( { 1 }^{ 2 }+{ 2 }^{ 2 } \right) +\left( { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 } \right) +...$$

    $$\displaystyle=\sum _{ r=1 }^{ n }{ \left( { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+...+{ r }^{ 2 } \right)  }$$ 

    $$\displaystyle=\sum _{ r=1 }^{ n }{ \left( \frac { r\left( r+1 \right) \left( 2r+1 \right)  }{ 6 }  \right)  } $$

    $$\displaystyle=\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ \left( r\left( { 2r }^{ 2 }+3r+1 \right)  \right)  } $$

    $$\displaystyle=\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ \left( { 2r }^{ 3 }+3{ r }^{ 2 }+r \right)  } =\frac { 2 }{ 6 } \sum _{ r=1 }^{ n }{ { r }^{ 3 } } +\frac { 3 }{ 6 } \sum _{ r=1 }^{ n }{ { r }^{ 2 } } +\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ { r } } $$

    $$\displaystyle=\frac { 1 }{ 3 } { \left( \frac { n\left( n+1 \right)  }{ 2 }  \right)  }^{ 2 }+\frac { 1 }{ 2 } \left( \frac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 }  \right) +\frac { 1 }{ 6 } \left( \frac { n\left( n+1 \right)  }{ 2 }  \right) $$

    $$=\displaystyle{ \left( \frac { { n }^{ 2 }\left( n+1 \right)  }{ 12 }  \right)  }^{ 2 }+\frac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 12 } +\frac { n\left( n+1 \right)  }{ 12 } $$

    $$=\displaystyle\frac { 1 }{ 12 } \left( n{ \left( n+1 \right)  }^{ 2 }\left( n+2 \right)  \right) $$
  • Question 5
    1 / -0
    $$\displaystyle 1^{2}+\left ( 1^{2}+2^{2} \right )+\left (1^{2}+2^{2}+3^{2} \right )+...$$ to $$n$$ terms.
    Solution
    nth term $$T_n = 1^2+2^2+3^2+.....+n^2=\sum n^2=\cfrac{1}{6}n(n+1)(2n+1)=\cfrac{1}{6}(2n^3+3n^2+n)$$

    Thus required summation is $$\displaystyle =\sum T_n =\frac{1}{6}\left(\sum 2n^3+\sum 3n^2+ \sum n\right) $$

    $$\displaystyle = \frac{1}{6}\left(2\frac{n^2(n+1)^2}{4}+3\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}\right) =\frac{1}{12}n(n+1)(2n^3+3n^2+n)$$
  • Question 6
    1 / -0
    Determine the fourth degree expression in n which is equal to $$\displaystyle \sum_{r=1}^{n}r\left ( r+1 \right )\left ( 2r+3 \right ).$$
    Solution
    Sum $$=\displaystyle \sum_{r=1}^{n}r\left ( r+1 \right )\left ( 2r+3 \right )=\sum_{r=1}^{n}(2r^3+5r^2+3r)$$

           $$= 2\sum_{r=1}^{n}r^3+5\sum_{r=1}^{n}r^2+3\sum_{r=1}^{n}r$$

           $$= 2(\cfrac{n(n+1)}{2})^2+5\cfrac{n(n+1)(2n+1)}{6}+3\cfrac{n(n+1)}{2}$$

           $$=\displaystyle \frac{1}{6}\left ( 3n^{4}+16n^{3}+27n^{2}+14n \right ).$$


  • Question 7
    1 / -0
    Observe the given multiples of 37.
    $${37\times3=111}$$
    $${37\times 6 =222}$$
    $${37\times9=333}$$
    $${37\times12=444}$$-------------------------------
    Find the product of $${37\times27}$$
    Solution
    $${37\times3=37\times(3\times1)=111}$$
    $${37\times 6=37\times(3\times2)=222}$$
    $${37\times9=37\times(3\times3)=333}$$


    $${37\times27=37\times(3\times9)=999}$$
  • Question 8
    1 / -0
    Sum to $$20$$ terms of the series $$1.{ 3 }^{ 2 }+2.{ 5 }^{ 2 }+3.{ 7 }^{ 2 }+...$$ is
    Solution
    We have,
    $${ t }_{ n }=[nth$$ term of $$1,2,3,...]\times [nth$$ term of $$3,5,7,...{ ] }^{ 2 }$$

    $$=n{ \left( 2n+1 \right)  }^{ 2 }=4{ n }^{ 3 }+4{ n }^{ 2 }+n$$

    $$\displaystyle \therefore { S }_{ n }=\sum { { t }_{ n } } =4\sum { { n }^{ 3 } } +4\sum { { n }^{ 2 } } +\sum { n } $$

    $$\displaystyle =4.{ \left\{ \frac { n\left( n+1 \right)  }{ 2 }  \right\}  }^{ 2 }+4.\frac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } +\frac { n\left( n+1 \right)  }{ 2 } $$

    $$\displaystyle ={ n }^{ 2 }{ \left( n+1 \right)  }^{ 2 }+\frac { 2 }{ 3 } n\left( n+1 \right) \left( 2n+1 \right) +\frac { 1 }{ 2 } n\left( n+1 \right) $$

    $$\displaystyle \therefore { S }_{ 20 }={ 20 }^{ 2 }.{ 21 }^{ 2 }+\frac { 2 }{ 3 } .20.21.41+\frac { 1 }{ 2 } .20.21=188090$$
  • Question 9
    1 / -0
    Find the value of 
    $$\displaystyle \left ( 1-\frac{1}{2^{2}} \right )\left ( 1-\frac{1}{3^{3}} \right )\left (1 -\frac{1}{4^{2}} \right )\left ( 1-\frac{1}{5^{2}} \right )........\left ( 1-\frac{1}{9^{2}} \right )\left ( 1-\frac{1}{10^{2}} \right )$$
    Solution
     Given expression can be expanded as $$\displaystyle \left ( 1-\frac{1}{4} \right )\left ( 1-\frac{1}{9} \right )\left ( 1-\frac{1}{16} \right )\left ( 1-\frac{1}{25} \right )$$............$$\displaystyle \left ( 1-\frac{1}{81} \right )\left ( 1-\frac{1}{100} \right )$$
    $$\displaystyle =\frac{3^{1}}{4_{1}}\times \frac{8^{2^{1}}}{9_{8_{1}}}\times \frac{15^{5^{1}}}{25_{5_{1}}}\times \frac{24^{3^{1}}}{36_{12_{1}}}\times \frac{48^{4^{1}}}{49_{7_{1}}}$$
    $$\displaystyle =\frac{63^{7^{1}}}{64_{16^{1}}}\times \frac{80^{5^{1}}}{81_{9_{1}}}\times \frac{99^{11}}{100_{20}}=\frac{11}{20}$$
  • Question 10
    1 / -0
    $$\displaystyle \frac{1^{2}}{1} + \frac{1^{2} + 2^{2}}{1 + 2} + \frac{1^{2} + 2^{2} + 3^{2}}{1 + 2 + 3} + .....$$ upto n terms is
    Solution
    General term of the given series is,
    $$\displaystyle T_n =\frac{\sum_{k=1}^n k^2}{\sum_{k=1}^n k}=\frac{\dfrac{1}{6}n(n+1)(2n+1)}{\dfrac{1}{2}n(n+1)}=\frac{1}{3}(2n+1)$$
    The required summation is,
    $$\displaystyle \sum_{k=1}^nT_k=\frac{1}{3}\left(2\sum_{k=1}^n k+\sum_{k=1}^n 1 \right)=\frac{1}{3}[n(n+1)+n]=\frac{1}{3}n(n+2)$$
    Hence option 'D' is correct choice.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now