$$S={ 1 }^{ 2 }+\left( { 1 }^{ 2 }+{ 2 }^{ 2 } \right) +\left( { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 } \right) +...$$
$$\displaystyle=\sum _{ r=1 }^{ n }{ \left( { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+...+{ r }^{ 2 } \right) }$$
$$\displaystyle=\sum _{ r=1 }^{ n }{ \left( \frac { r\left( r+1 \right) \left( 2r+1 \right) }{ 6 } \right) } $$
$$\displaystyle=\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ \left( r\left( { 2r }^{ 2 }+3r+1 \right) \right) } $$
$$\displaystyle=\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ \left( { 2r }^{ 3 }+3{ r }^{ 2 }+r \right) } =\frac { 2 }{ 6 } \sum _{ r=1 }^{ n }{ { r }^{ 3 } } +\frac { 3 }{ 6 } \sum _{ r=1 }^{ n }{ { r }^{ 2 } } +\frac { 1 }{ 6 } \sum _{ r=1 }^{ n }{ { r } } $$
$$\displaystyle=\frac { 1 }{ 3 } { \left( \frac { n\left( n+1 \right) }{ 2 } \right) }^{ 2 }+\frac { 1 }{ 2 } \left( \frac { n\left( n+1 \right) \left( 2n+1 \right) }{ 6 } \right) +\frac { 1 }{ 6 } \left( \frac { n\left( n+1 \right) }{ 2 } \right) $$
$$=\displaystyle{ \left( \frac { { n }^{ 2 }\left( n+1 \right) }{ 12 } \right) }^{ 2 }+\frac { n\left( n+1 \right) \left( 2n+1 \right) }{ 12 } +\frac { n\left( n+1 \right) }{ 12 } $$
$$=\displaystyle\frac { 1 }{ 12 } \left( n{ \left( n+1 \right) }^{ 2 }\left( n+2 \right) \right) $$