Self Studies

Sequences and Series Test - 27

Result Self Studies

Sequences and Series Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$m * n = m+(m-1)+(m-2)+ ...... +(m-n)$$, evaluate $$7 * 5$$.
    Solution
    $$\Rightarrow$$  $$m * n=m+(m-1)+(m-2)+....+(m-n)$$
    $$\Rightarrow$$  In $$7 * 5$$, $$m=7$$ and $$n=5$$
    $$\Rightarrow$$  $$7 * 5=7+(7-1)+(7-2)+(7-3)+(7-4)+(7-5)$$
    $$\Rightarrow$$  $$7 * 5=7+6+5+4+3+2$$
    $$\therefore$$   $$7 * 5=27$$
  • Question 2
    1 / -0
    If $$a\odot b = 6\times a - 3\times b$$, evaluate $$(5\odot 3) \odot 20$$
    Solution
    $$\Rightarrow$$  $$a\odot b=6\times a-3\times b$$         [ Given ]
    $$\Rightarrow$$  $$(5\odot 3)\odot 20$$
    $$\Rightarrow$$  Let $$a=5$$ and $$b=3$$
    $$\Rightarrow$$  $$(6\times 5-3\times 3)\odot 20$$
    $$\Rightarrow$$  $$(30-9)\odot 20$$
    $$\Rightarrow$$  $$21\odot 20$$
    $$\Rightarrow$$  Let $$a=21$$ and $$b=20$$
    $$\Rightarrow$$  $$6\times 21-3\times 20$$
    $$\Rightarrow$$  $$126-60$$
    $$\Rightarrow$$  $$66$$
    $$\therefore$$    $$(5\odot 3)\odot 20=66$$
  • Question 3
    1 / -0
    What is the missing number in the sequence $$1, 5, 10, 16, 23, 31,$$ ____?
    Solution
    We can see that the difference between the consecutive numbers of the series is increasing by $$ 1 $$

    $$ 5 - 1 = 4 $$
    $$ 10 - 5 = 5 $$
    $$ 16 - 10 = 6 $$
    $$ 23 - 16 = 7 $$
    $$ 31 - 23 = 8 $$

    Hence, Next term $$ - 31 = 9 $$
    => Next term $$ = 31 + 9 = 40 $$
  • Question 4
    1 / -0
    $$6, 10, 18, 34, 66$$
    The first number in the list above is $$6$$. Determine a rule for finding each successive number in the list.
    Solution
    The series is  $$6,10,18,34,66$$
    In the given series:
    $$6+6=12-2=10$$
    $$10+10=20-2=18$$
    $$18+18=36-2=34$$
    $$34+34=68-2=66$$
    Hence in this each successive number is obtained by double the preceding number and then subtract $$2$$ from the result. 
  • Question 5
    1 / -0
    The value of the sum $$1.2.3+2.3.4+3.4.5+...$$ upto n terms =
    Solution

  • Question 6
    1 / -0
    $$m, 2m, 4m, . . . $$
    The first term in the sequence above is $$m$$, and each term thereafter is equal to twice the previous term. If $$m$$ is an integer, which of the following could NOT be the sum of the first four terms of this sequence?
    Solution
    The first term in given Geometric series, $$a_1=m$$
    The common ratio $$r$$ $$=\dfrac{4m}{2m}=2$$
    No. of terms, $$n$$ $$=4$$
    Applying sum of GP formula,
    $$S_n=\dfrac{a(1-r^n)}{1-r}$$
          $$=\dfrac{m(1-2^4)}{1-2}$$
          $$=\dfrac{m(1-16)}{-1}=15m$$   
    If $$m$$ is an integer the sum of the first four terms of this sequence should be in multiple of $$15$$.
    Hence, option A is correct which is not a multiple of $$15$$.
  • Question 7
    1 / -0
    The terms of a sequence are defined by $$a_{n} = 3a_{n - 1} - a_{n - 2}$$ for $$n > 2$$. Find the value of $$a_{5}$$ given that $$a_{1} =4$$ and $$a_{2} = 3$$.
    Solution
    • Given $${ a }_{ n }=3{ a }_{ n-1 }-{ a }_{ n-2 }$$ , $${a}_{1}=4$$ and $${a}_{2} = 3$$
    • $${a}_{3} = 3{a}_{2}-{a}_{1} = 9-4=5$$
    • $${a}_{4} = 3{a}_{3}-{a}_{2} = 15-3 = 12$$
    • $${a}_{5}=3{a}_{4}-{a}_{3} = 36-5 = 31$$

  • Question 8
    1 / -0
    For all numbers a and b, let $$\displaystyle a\bigodot b$$ be defined by $$\displaystyle a\bigodot b=ab+a+b$$. Then for the numbers $$x$$, $$y$$ and $$z$$, which of the following is/are true?
    I. $$\displaystyle x\bigodot y=y\bigodot x$$
    II. $$\displaystyle \left( x-1 \right) \bigodot \left( x+1 \right) =\left( x\bigodot x \right) -1$$
    III. $$\displaystyle x\bigodot \left( y+z \right) =\left( x\bigodot y \right) +\left( x\bigodot z \right) $$
    Solution
    $$For(I)$$
    $$x\odot y=y\odot x$$
    $$x\odot y=xy+x+y\Rightarrow x\odot y=y\odot x$$
    $$y\odot x=yx+y+x$$

    $$For(II)$$
    $$\left( x-1 \right) \odot \left( x+1 \right)$$ 
    $$=(x-1)(x+1)+x-1+x+1$$
    $$={ x }^{ 2 }-1+2x$$
    $$\left( x\odot x \right) -1=x\times x+x+x-1$$
    $${ x }^{ 2 }+2x-1$$
    $$\therefore \left( x-1 \right) \odot \left( x+1 \right) =\left( x\odot x \right) -1$$

    $$For(III)$$
    $$x\odot \left( y+z \right) $$
    $$=x\left( y+z \right) +x+y+z$$
    $$=xy+xz+x+y+z$$
    $$x\odot y=xy+x+y$$
    $$x\odot z=xz+x+z$$
    $$x\odot y+x\odot z=xy+xz+x+y+x+z$$
    $$=xy+xz+2x+y+z$$
    $$\Rightarrow x\odot \left( y+z \right) \neq x\odot y+x\odot z$$

    $$\therefore (I)\& (II)$$ are true.
  • Question 9
    1 / -0
    The sum of $$1$$ st $$n$$ terms of the series
    $$\cfrac { { 1 }^{ 2 } }{ 1 } +\cfrac { { 1 }^{ 2 }+{ 2 }^{ 2 } }{ 1+2 } +\cfrac { { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 } }{ 1+2+3 } +........$$
    Solution
    General term of the given series is, $$T_r=\dfrac{1^2+2^2+....+r^2}{1+2+.....+r}=\dfrac{\frac{r(r+1)(2r+1)}{6}}{\frac{r(r+1)}{2}}=\dfrac{2r+1}{3}$$

    Hence required sum $$\displaystyle =\sum_{r=1}^nT_r=\dfrac{1}{3}\sum_{r=1}^n(2r+1)$$
    $$\displaystyle=\dfrac{1}{3} \left(2\sum_{r=1}^n r+\sum_{r=1}^n 1 \right)=\dfrac{1}{3}\left(2\cdot \dfrac{n(n+1)}{2} +n\right)=\dfrac{1}{3}(n^2+n+n)=\dfrac{n(n+2)}{3}$$
  • Question 10
    1 / -0
    The sum of the series,
    $$\displaystyle \frac{1}{2.3}\cdot 2+ \frac{2}{3.4}\cdot 2^2+\frac{3}{4.5}\cdot 2^3+ ......$$ to n terms is _____.
    Solution
    Let  $$S = \displaystyle \frac{1}{2.3}\cdot 2+ \frac{2}{3.4}\cdot 2^2+\frac{3}{4.5}\cdot 2^3+ ......$$

    General term is given by, $$T_r = \dfrac{r}{(r+1)(r+2)}\cdot 2^r=\dfrac{r\cdot 2^r}{(r+1)(r+2)}=\dfrac{2(r+1)-(r+2)}{(r+1)(r+2)}\cdot 2^r=\dfrac{(r+1)2^{r+1}-(r+2)2^r}{(r+1)(r+2)}$$

    $$\Rightarrow T_r = \dfrac{2^{r+1}}{r+2}-\dfrac{2^r}{r+1}$$, split the terms 

    Therefore the required sum $$=\displaystyle \sum_{r=1}^nT_r=T_1+T_2+T_3+...........+T_n$$

    $$\quad =\left( \dfrac{2^2}{3}-\dfrac{2}{2}\right)+\left( \dfrac{2^3}{4}-\dfrac{2^2}{3}\right)+\left(\dfrac{2^4}{5}-\dfrac{2^3}{4} \right)+..............+\left(\dfrac{2^{n+1}}{n+2} -\dfrac{2^n}{n+1}\right)$$

    $$=-\dfrac{2}{2}+\dfrac{2^{n+1}}{n+2}=\dfrac{2^{n+1}}{n+2}-1$$, all the remaining terms will get cancelled 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now