Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \sum_{r = 0}^{n}{ \left( \frac{ 2^{r-2} . ^nC_r}{(r+1)(r+2)} \right) }$$ is equal to

  • Question 2
    1 / -0

    If the $$p^{th}$$ term of the series of positive numbers $$25, 22\dfrac {3}{5}, 20\dfrac {1}{2}, 18\dfrac {1}{4}$$, .... is numerically the smallest, then the $$p^{th}$$ is.

  • Question 3
    1 / -0

    13, 74, 290, 650,.......

  • Question 4
    1 / -0

    If $$\begin{vmatrix} x \end{vmatrix}<1$$  then the coefficient of $$x^5$$ in the expansion of $$\dfrac{3x}{(x-2) (x-1)}$$ is

  • Question 5
    1 / -0

    If the coefficients of $$x^9,x^{10},x^{11}$$ in the expansion of $$(1+x)^n $$ are in arithmetic progression then $$n^2-41n=$$

  • Question 6
    1 / -0

    If $$\sin^{-1}\begin{pmatrix}  x-\frac{x^2}{2}+\frac{x^3}{4}-..........\infty  \end{pmatrix}+\cos^{-1}\begin{pmatrix} x^2-\frac{x^4}{2}+\frac{x^6}{4}........\infty\end{pmatrix} =\frac{\pi}{2}$$ and $$0<x<\sqrt{2}$$ then x=

  • Question 7
    1 / -0

    The value of $$\cfrac { 1 }{ \left( 2n-1 \right) !0! } +\cfrac { 1 }{ \left( 2n-3 \right) !2! } +\cfrac { 1 }{ \left( 2n-5 \right) !4! } +....+\cfrac { 1 }{ 1!\left( 2n-2 \right) ! } $$ equal to

  • Question 8
    1 / -0

    The sum of first $$20$$ terms of the series $$1,6,13,22$$- is

  • Question 9
    1 / -0

    $$2.4+4.7+6.10+.....$$ upto $$(n-1)$$ terms 

  • Question 10
    1 / -0

    Sum of the series $$\sum _{ r=1 }^{ n }{ \left( { r }^{ 2 }+1 \right) r! } $$ is ______

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now