Self Studies

Sequences and Series Test - 31

Result Self Studies

Sequences and Series Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \sum_{r = 0}^{n}{ \left( \frac{ 2^{r-2} . ^nC_r}{(r+1)(r+2)} \right) }$$ is equal to
  • Question 2
    1 / -0
    If the $$p^{th}$$ term of the series of positive numbers $$25, 22\dfrac {3}{5}, 20\dfrac {1}{2}, 18\dfrac {1}{4}$$, .... is numerically the smallest, then the $$p^{th}$$ is.
    Solution
    $$d  = 22\dfrac{3}{4} - 25$$
    $$=-2\dfrac{1}{4} = -\dfrac{9}{4}$$
    $$t_n \ge 0$$
    $$\therefore t_n = 25 + (n-n)\left(-\dfrac{9}{4}\right)$$
    $$25-\dfrac{9}{4} (n-1) \ge 0$$
    $$\Rightarrow 25\ge \dfrac{9}{4} (p-1) \ge 0$$
    $$\Rightarrow \dfrac{100}{9} \ge p -1$$
    $$\Rightarrow \dfrac{109}{9} \ge p$$
    $$12 \dfrac{1}{9} \ge p$$
    12th term is positive.
    $$25 + (12 - 1) \times \left(-\dfrac{9}{4}\right) = \dfrac{1}{4}$$
  • Question 3
    1 / -0
    13, 74, 290, 650,.......
    Solution
    Here we observe the first term 13 can be written as: $$2^2+3^2$$
    Similarly other numbers can be written as:
    $$74: 5^2+7^2$$
    $$290: 11^2+13^2$$
    $$650: 17^2+19^2$$
    Here, we observe that all above term of series can be written as sum of squares of two prime numbers which comes next to it's previous pair.
    Like: $$(2,3);(5,7);(11,13);(17,19)$$ So, other pair of prime number will be $$ (23,29).$$
    Hence next term of given series will be: 
    $$\Rightarrow 23^2+29^2=1370$$
    So, correct answer is $$1370$$.

  • Question 4
    1 / -0
    If $$\begin{vmatrix} x \end{vmatrix}<1$$  then the coefficient of $$x^5$$ in the expansion of $$\dfrac{3x}{(x-2) (x-1)}$$ is
    Solution
    $$\dfrac{3x}{(x-2) (x+1)}= \dfrac {A}{x-2}+\dfrac{B}{x+1}$$

    $$A=\dfrac{3(2)}{2+1}=2; B=\dfrac{3(-1)}{-1-2}=\dfrac{-3}{-3}=1$$

    $$\dfrac{3x}{(x-2)(x+1)}=\dfrac{2}{x-2}+\dfrac{1}{x+1}$$

    $$=\dfrac{2}{2(1-\dfrac {x  }{ 2 } )} +\dfrac {1}{x+1} = -\begin{pmatrix}  1-\dfrac { x }{ 2 }  \end{pmatrix}^{-1} +(1+x)^{-1}$$

    $$=-\begin{pmatrix}  1+\dfrac{x}{2}+\begin{pmatrix}  \dfrac {x}{2}\end{pmatrix}^2+......+\begin{pmatrix} \dfrac{x}{2} \end{pmatrix}^5+...... \end{pmatrix}+(1-x+x^2-x^3+x^4-x^5+......)$$

    Coefficient of $$x^5=\dfrac{-1}{32}-1=\dfrac{-33}{32}$$
  • Question 5
    1 / -0
    If the coefficients of $$x^9,x^{10},x^{11}$$ in the expansion of $$(1+x)^n $$ are in arithmetic progression then $$n^2-41n=$$
    Solution
    $$^nC_9,^nC_{10},^nC_{11}$$ are in A.P

    $$\Rightarrow 2\ ^{n}C_{10}=^nC_9+^nC_{11} \Rightarrow=\dfrac{^nC_9}{^nC_{10}}+\dfrac{^nC_{11}}{^nC_{10}}$$

    $$\Rightarrow 2=\dfrac{10}{n-9}+\dfrac{n-10}{11}  \Rightarrow 2=\dfrac{110+n^2-19n+90}{11n-99}$$

    $$\Rightarrow n^2-41n=-398$$
  • Question 6
    1 / -0
    If $$\sin^{-1}\begin{pmatrix}  x-\frac{x^2}{2}+\frac{x^3}{4}-..........\infty  \end{pmatrix}+\cos^{-1}\begin{pmatrix} x^2-\frac{x^4}{2}+\frac{x^6}{4}........\infty\end{pmatrix} =\frac{\pi}{2}$$ and $$0<x<\sqrt{2}$$ then x=
    Solution

  • Question 7
    1 / -0
    The value of $$\cfrac { 1 }{ \left( 2n-1 \right) !0! } +\cfrac { 1 }{ \left( 2n-3 \right) !2! } +\cfrac { 1 }{ \left( 2n-5 \right) !4! } +....+\cfrac { 1 }{ 1!\left( 2n-2 \right) ! } $$ equal to
    Solution
    We know that,
    $$^nC_0+^nC_1+^nC_2..........^nC_n=2^n$$

    $$^nC_0+^nC_2+^nC_4..........^nC_{n-1}=$$$$^nC_1+^nC_3+^nC_5..........^nC_n=2^{n-1}$$

    Using the above relation,

    $$^{2n-1}C_0+^{2n-1}C_1+^{2n-1}C_2..........^{2n-1}C_n=2^{(2n-1)-1}$$

    Expanding the coefficients we get the desired result,

    $$\dfrac{(2n-1)!}{(2n-1)!0!}+$$$$\dfrac{(2n-1)!}{(2n-3)!2!}+$$$$\dfrac{(2n-1)!}{(2n-5)!4!}+$$$$...............+\dfrac{(2n-1)!}{1!(2n-2!)}=2^{2n-2}$$

    $$\dfrac{1}{(2n-1)!0!}+$$$$\dfrac{1}{(2n-3)!2!}+$$$$\dfrac{1}{(2n-5)!4!}+$$$$...............+\dfrac{1}{1!(2n-2!)}=\dfrac{2^{2n-2}}{(2n-1)!}$$

  • Question 8
    1 / -0
    The sum of first $$20$$ terms of the series $$1,6,13,22$$- is
    Solution
    Given series, $$ S = 1,6,13,22,...$$
    Sum of series, $$ S_{n} = 1+6+13+22+...+ T_{n}$$
    $$ S_{n} = 1+6+13+...+T_{n}+T_n$$
    $$ 0 = 1+5+7+9+,,,T_{n}$$
    $$ T_{n} = 1+ [5+7+9+...(n-1)terms]$$
    (sum of AP) $$ = 1+\left [ \left ( \dfrac{n-1}{2} \right )(2(5) + (n-2)2) \right ]$$
    $$ = 1+ \left [ (n-1)(n-3) \right ]$$
    $$ = (n+1)^2 -3 $$
    sum of 20 terms in series $$ = \displaystyle \sum_{n=1}^{20} (n^2 + 2n-2)$$
    $$ = \displaystyle \sum_{n=1}^{20}n^2 +2\sum_{n=1}^{20} n - 2 \times 20 $$
    $$ = 5780 $$

  • Question 9
    1 / -0
    $$2.4+4.7+6.10+.....$$ upto $$(n-1)$$ terms 
    Solution
    The general term of the series is $$T_n=2n(3n+1)=6n^2+2n$$
    The sum of series to $$n$$ terms is $$6\times\dfrac{n(n+1)(2n+1)}6+2\times\dfrac{n(n+1)}2=n(n+1)[(2n+1)+1]=2n(n+1)^2$$
    Now, we need the sum till $$n-1$$ terms, so we substitute $$n-1$$ in place of $$n$$
    Hence, sum of series is $$2(n-1)n^2=2n^3-2n^2$$
  • Question 10
    1 / -0
    Sum of the series $$\sum _{ r=1 }^{ n }{ \left( { r }^{ 2 }+1 \right) r! } $$ is ______
    Solution

    $$\sum _{ r=1 }^{ n }{ \left( { r }^{ 2 }+1 \right) r! } $$


    $$\Rightarrow \sum_{ r=1 }^{ n }{ ( { r }^{ 2 }+1+2r-2r ) r! }$$


    $$\Rightarrow \sum_{ r=1 }^{ n }{ ( { ( r+1) }^{ 2 }.r!-2r.r! ) }$$


    $$\Rightarrow \sum_{ r=1 }^{ n }{ ( { ( r+1) }^{ }.(r+1)!-2r.r! ) }$$


    $$\Rightarrow \sum_{ r=1 }^{ n }{ [ ( r+2-1 )( r+1 )!-2( ( r+1-1 )r! ) ] }$$


    $$\Rightarrow \sum_{ r=1 }^{ n }{ [ ( r+2 )( r+1 )!-( r+1 )!-2( ( r+1 )r!-r! ) ] }$$


    $$\Rightarrow \sum_{ r=1 }^{ n }{ \left [ ( r+2 )!-( r+1 )!-2.( r+1 )!+2.r!) \right] }$$


    $$T_1=3!-2!- 2.2!+2.1!$$


    $$T_2=4!-3!-2.3!+2.2!$$


    $$T_3=5!-4!-2.4!+2.3!$$

    .

    .

    .

    .

    .

    .

    .

    $$T_n=(n+2)!-(n+1)!-2.(n+1)!+2.n!$$

    $$-------------------$$

    $$Sum=S_n=(n+2)!-2!-2(n+1)!+2.1!$$


    $$S_n=(n+2)!-2(n+1)!-2+2$$


    $$S_n=(n+1)![n+2-2]$$


    $$S_n=n.(n+1)!$$


    Correct answer is C

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now