Self Studies

Sequences and Series Test - 33

Result Self Studies

Sequences and Series Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$9@ 3 = 12, 15 @ 4 = 22, 16 @ 14 = 4$$, then what is the value of $$6 @ 2 = ?$$
    Solution
    $$(9 - 3) \times 2 = 12, (15 - 4) \times 2$$
    $$= 22, (16 - 14) \times 2 = 4$$
    Hence, $$(6 - 2) \times 2 = 8$$.
  • Question 2
    1 / -0
     5 2 7
     ? 3 1
     4 5 2
     -15 7 13
    Select the missing number from the given alternatives.
    Solution
    Columnwise
    First Number x Third Number - Second Number = Lowermost Number

    First Column
    $$5 \times 4 - ? = 15 \Rightarrow 20 - ? = 15$$
    $$\therefore ? = 20 - 15 = 5$$

    Second Column
    $$ 2 \times 5 - 3 = 10 - 3 = 7$$

    Third Column
    $$ 7 \times 2 - 1 = 14 - 1 = 13$$
  • Question 3
    1 / -0
    Directions for questions 1 to 3: Find the related word/ letters/numbers from given alternatives.
    12:72::8:?
    Solution
    12 $$\times \, \frac{12}{2}$$ = 72 similarly, 8 $$\times \, \frac{8}{2}$$ = 32
  • Question 4
    1 / -0
    Select the missing number from the given alternatives.

    Solution
    48 $$\div$$ 2 = 24;
    24 $$\times$$ 3 = 72: 72 $$\div$$ 2 = 36;
    36 $$\div$$ 3 = 108; 108 $$\div$$ 2 = 54.
  • Question 5
    1 / -0
    Choose the correct answer from the alternatives given.
    If $$1^2+2^2$$ +.... + $$x^2$$ = $$\frac{x(x + 1)(2x + 1)}{6}$$then $$1^2$$ 
    + $$3^2$$+ $$5^2$$ + .... + $$19^2$$ is equal to
    Solution
    $$(1^2+3^2+5^2+...........+19^2)$$
    = $$\displaystyle\, $$(1^2$$ \, + \, $$2^2$$ \, + \, $$3^2$$ \, + \, ........... \, + \, 20^2)  \, - \, (2^2 \, + \, 4^2 \, + \, 6^2 \, + \, ........... \, + \, 20^2)$$
    = $$\displaystyle\, (1^2 \, + \, 2^2 \, + \, 3^2 \, + \, .......... \, + \, 20^2) - 4(1 \, + \, 2^2 \, + \, 3^2 \, + \, .......... \, + \, 10^2)$$
    Using the formula,
    $$\displaystyle\, = \frac{20 \times  21 \times  41}{6} - 4 \left ( \frac{10 \times  11 \times  21}{6} \right ) = 2870 - 1540 = 1330$$

  • Question 6
    1 / -0
    What is the value of $$\dfrac {m^{2} + mn}{m^{2} + n^{2}} + \dfrac {m^{2} - mn}{m^{2} + n^{2}} + \dfrac {n^{2} + m}{m^{2} + n^{2}} + \dfrac {n^{2} - mn}{m^{2} + n^{2}} $$
    Solution
    Given that,
    $$\dfrac {m^{2} + mn}{m^{2} + n^{2}} + \dfrac {m^{2} - mn}{m^{2} + n^{2}} + \dfrac {n^{2} + m}{m^{2} + n^{2}} + \dfrac {n^{2} - mn}{m^{2} + n^{2}}$$
    $$= \dfrac {m^{2} + mn + m^{2} - mn + n^{2} + mn + n^{2} - mn}{m^{2} + n^{2}}$$
    $$= \dfrac {2(m^{2} + n^{2})}{(m^{2} + n^{2})} = 2$$.
  • Question 7
    1 / -0
    Choose the correct answer from the alternatives given :
    The sum of $$\dfrac{1}{\sqrt 2 + 1} \, + \, \dfrac{1}{\sqrt 3 + \sqrt 2} \, + \, \dfrac{1}{\sqrt 4 + \sqrt 3} \, + \, ..... \, + \dfrac{1}{\sqrt {100} + \sqrt {99}}$$ is
    Solution
    $$\frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{4} + \sqrt{3}} + .......+\frac{1}{\sqrt{100} + \sqrt{99}}$$
    Rationalising the denominator,
    $$\displaystyle\, = \frac{1}{\sqrt{2} + 1} \times  \frac{\sqrt{2} - 1}{\sqrt{2} - 1} + \frac{1}{\sqrt{3} + \sqrt{2}} \times  \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
    $$\displaystyle\, + \frac{1}{\sqrt{4} + \sqrt{3}} \times  \frac{\sqrt{4} - \sqrt{3}}{\sqrt{4} - \sqrt{3}} + ......+ \frac{1}{\sqrt{100} + \sqrt{99}} \times  \frac{\sqrt{100} - \sqrt{99}}{\sqrt{100} - \sqrt{99}}$$
    $$\displaystyle\, \sqrt{2} 1 + \sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + .+ \sqrt{100} - \sqrt{99}$$
    = $$-1 + 10 = 9$$
  • Question 8
    1 / -0
    Choose the correct answer alternatives given.
    Select the missing number from the given alternatives.

    Solution
    80 = 8 $$\times$$ (8 + 2)
    143 = 11 $$\times$$ (11 + 2)
    323 = ? $$\times$$ (? + 2)
    $$\therefore$$ ? = 17
  • Question 9
    1 / -0
    If $$1^{3} + 2^{3} + .... + 10^{3} = 3025$$, then the value of $$2^{3} + 4^{3} + ..... + 20^{3}$$ is
    Solution
    Given that, $$1^{3} + 2^{3} + .... + 10^{3} = 3025$$
    Now, $$2^{3} + 4^{3} + .... + 20^{3}$$
    $$= 2^{3} (1 + 2^{3} + .... + 10^{3}) = 8\times 3025 = 24200$$.
  • Question 10
    1 / -0
    In our number system the base is ten. If the base were changed to four you would count as follows: $$1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30,....$$ The twentieth number would be:
    Solution
    If we change the base from 10 to 4 then the number 20 will be written as
    $$20$$= $$1\times 4^2$$+$$1\times4^1$$+$$0\times4^0$$.
    so the required number is 110.
    we can also find by dividing the number by 4
    $$\dfrac{20}{4}$$ =$$5$$. now $$\frac{5}{4}$$=1 as dividend, now $$\frac{1}{4}$$=0 as dividend. so the required number is 110.
    so option $$E$$ is correct option.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now