Self Studies

Sequences and Series Test - 39

Result Self Studies

Sequences and Series Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\underset{r = 1}{\overset{n}{\sum}} r (r + 1) (2r + 3) = an^4 + bn^3 + cn^2 + dn + e$$, then 
    Solution

  • Question 2
    1 / -0
    $$\displaystyle \sum^{n}_{r=0} (-1)^r \,{^nC_r}. \dfrac{(1 + r \ell n 10)}{(1 + \ell n 10^n)^r} =$$
    Solution

  • Question 3
    1 / -0
    The sum to $$n$$ terms of the services $$\frac{3}{1^2}+\frac{5}{1^2+2^2}+\frac{7}{1^2+2^2+3^2}+.......$$ is -
    Solution
    General term $$=\dfrac{(2n+1)6}{(n)(n+1)(2n+1)}=\dfrac{6}{n(n+1)}=6\left[\dfrac{1}{n}-\dfrac{1}{n+1}\right]$$.
    Sum $$=6\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}............-\dfrac{1}{n+1}\right]$$
    $$=6\left[1-\dfrac{1}{n+1}\right]=\dfrac{6n}{x+1}$$
    $$B$$ is correct
  • Question 4
    1 / -0
    If $$ (1^2-t_1)+ (2^2-t_2) +.......+(n^2-1)$$, then $$t_n$$ is
  • Question 5
    1 / -0
    Evaluate the definite integral:
    $$\displaystyle\int_{0}^{\pi/2}\dfrac{\cos^{2}x}{1+3\sin^{2}x}\ dx$$
    Solution

    Let $$I=\displaystyle\int_{0}^{\pi/2}\dfrac{\cos^{2}x}{1+3\sin^{2}x}\ dx$$. Then

    $$I=\displaystyle\int_{0}^{\pi/2}\dfrac{\cos^{2}x}{1+3\sin^{2}x}dx$$. Then,
     
    $$I=\displaystyle\int_{0}^{\pi/2}\dfrac{\sec^{2}x}{\sec^{2}x(\sec^{2}x+3\tan^{2}x)}\ dx$$                       [Diving $$Numerator$$ and $$Denominator$$ by $$\cos^{4}x$$]

    $$\Rightarrow I=\displaystyle\int_{0}^{\infty}\dfrac{1}{(1+t^{2})(1+4t^{2})}\ dt$$, where $$t=\tan x$$

    $$\Rightarrow I=-\dfrac{1}{3}\displaystyle\int_{0}^{\infty}\left(\dfrac{1}{1+t^{2}}-\dfrac{4}{1+t^{2}}\right)dt=-\dfrac{1}{3}\left[\tan^{-1}t-2\tan^{-1}2t\right]_{0}^{\infty}$$

    $$\Rightarrow =-\dfrac{1}{3}\left(\dfrac{\pi}{2}-\pi\right)=\dfrac{\pi}{6}$$

  • Question 6
    1 / -0
    The unit's place digit in $$(1446)^{4n + 3}$$ is
    Solution

  • Question 7
    1 / -0
    The sum of the infinite series, $$ { 1 }^{ 2 }-\dfrac { { 2 }^{ 2 } }{ 5 } +\dfrac { { 3 }^{ 2 } }{ { 5 }^{ 2 } } -\dfrac { { 4 }^{ 2 } }{ { 5 }^{ 3 } } +\dfrac { { 5 }^{ 2 } }{ { 5 }^{ 4 } } -\dfrac { { 6 }^{ 2 } }{ { 5 }^{ 3 } } + ..........  $$ is
    Solution

  • Question 8
    1 / -0
    Solve then inequality 
    $$\dfrac {x-1}{x}\geq 2$$
    Solution


    Given 

    $$\dfrac {x-1}{x}\geq 2$$

    $$x-1\geq 2x$$

    $$x+1\leq 0$$

    $$\implies x\leq -1$$

    $$\implies x \in (-\infty ,-1]$$

  • Question 9
    1 / -0
    The last three digits in $$10!$$ are ?
    Solution
    The last three digits in$$ 10!$$ are,
    The $$10!$$ is, 
    $$=10\times 9\times 8\times 7 \times 6\times 5\times 4\times 3\times 2\times 1\\$$
     $$=3628800.$$

    So, the last three digits of$$ 10!$$ is
    $$=3628(800),$$
    $$=800$$.
  • Question 10
    1 / -0
    The sum $$2 \times 5 + 5 \times 9 + 8 \times 13 +  \ldots 10$$ term is 
    Solution
    Solution -
    General term = $$(3n-1)(4n+1)$$

    $$= 12n^{2}+3n-4n-1$$

    $$= 12n^{2}-4n+3n-1$$

    $$=12n^{2}-n-1$$

    $$\displaystyle \sum_{n=1}^{10}12n^{2}-n-1$$

    $$= \dfrac{12n(n+1)(2n+1)}{6}- \dfrac{n(n+1)}{2}-n$$

    $$=2\times 10\times 11\times 21-55-10$$

    $$= 4620-55-10$$

    $$= 4555$$
    B is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now