Self Studies

Sequences and Series Test - 40

Result Self Studies

Sequences and Series Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of infinity of the series $$\dfrac{1}{1} + \dfrac{1}{1 + 2} + \dfrac{1}{1+2+3}+$$______ is equal to:
    Solution

  • Question 2
    1 / -0
    A series is given as: $$4+7+10+13+16+.....$$ Find the sum of the series up to $$10$$ terms.
    Solution
    The given series is $$4+7+10+13+16+...$$
    $$a=4,d=3$$

    The sum of series is 
    $$S_n=\dfrac n2[2a+(n-1)d]$$

    $$=\dfrac {10}2[2(4)+9(3)]\\$$
    $$=5(8+27)\\$$
    $$=5\times 35\\$$
    $$=175$$
  • Question 3
    1 / -0
    If $$a_n=n(n!)$$, then $$\displaystyle\sum^{100}_{r=1} a_r$$ is equal?
    Solution
    Given an= $$n(n!)$$
    $$=(n+1-1)n!$$
    $$=(n+1)n!-n!$$
    $$=(n+1)!-n!$$
    $$\therefore \displaystyle \sum_{r=1}^{100}a_{r}=a_{1}+a_{2}+a_{3}+.......+a_{100}$$
    $$=((1+1)!-1!)+((2+1)!-2!)+....+((100+1)!-100!)$$
    $$=2!-1!+3!-2!+.....+100!-99!+101!-100!$$
    $$=101!-1$$
  • Question 4
    1 / -0
    If $$a_{1}=a_{2}=2,a_{n}=a_{n-1}-1(n > 2)$$ then $$a_{5}$$ is ?
    Solution
    Given that $${ a }_{ 1 }=2\quad and\quad { a }_{ 2 }=2$$

    use $${ a }_{ n }={ a }_{ n-1 }-1$$

    Putting n=3,$${ a }_{ 3 }={ a }_{ 3-1 }-1$$

    $${ a }_{ 3 }={ a }_{ 2 }-1=2-1=1$$

    Putting n=4,$${ a }_{ 4 }={ a }_{ 4-1 }-1$$

    $${ a }_{ 4 }={ a }_{ 3 }-1=1-1=0$$

    Putting n=5,$${ a }_{ 5 }={ a }_{ 5-1 }-1$$

    $${ a }_{ 5 }={ a }_{ 4 }-1=0-1=-1$$

    Hence the five terms of sequence are $$2,2,1,0 and-1.$$
  • Question 5
    1 / -0
    The sum of the series $$1+\dfrac{1}{4\times 2!}+\dfrac{1}{16\times 4!}+\dfrac{1}{64\times 6!}+....\infty$$ is?
    Solution
    given series is $$1+\cfrac{1}{4\times 2!}+\cfrac{1}{16\times 4!}+\cfrac{1}{64\times 6!}+....\infty$$
    We know that $${e}^{x}=1+\cfrac{x}{1!}+\cfrac{{x}^{2}}{2!}+\cfrac{{x}^{3}}{3!}+....\infty$$
    Let the series be denoted by $$S$$
    $$S=1+\cfrac{1}{2!}.{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }+\cfrac{1}{4!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 4 }+\cfrac{1}{6!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 6 }+....\infty$$
    $$=(1+\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }+\cfrac{1}{3!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }+....\infty)-(\cfrac{1}{1!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }+\cfrac{1}{3!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 3 }+....\infty)$$
    $$2S=(1+\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }+.... \infty)+(1-\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }-\cfrac{1}{3!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 3 }+....\infty)$$
    By $${e}^{x}$$ expansion $${e}^{1/2}=1+\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }+....\infty)$$
    $${e}^{-1/2}=1-\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }+...\infty$$
    $$2S={e}^{1/2}+{e}^{-1/2}$$
    $$S=\cfrac { \sqrt { e } +\cfrac { 1 }{ \sqrt { e }  }  }{ 2 } =\cfrac { e+1 }{ 2\sqrt { e }  } 
  • Question 6
    1 / -0
    The sum of the series $$1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+.+100.2^{99}$$ is  ?
    Solution
    $$S=1+2.2+{ 3.2 }^{ 2 }+{ 4.2 }^{ 3 }3+{ 5.2 }^{ 4 }+..+{ 100.2 }^{ 99 }$$

    $$2S={ 1 }.{2}^{ 1 }+{ 2.2 }^{ 2 }+{ 3.2 }^{ 3 }+..+{ 99.2 }^{ 99 }+{ 100.2 }^{ 100 }$$

    subtracting the both,

    $$\left( 1-2 \right) S=1+{ 1.2 }^{ 1 }+{ { 1.2 } }^{ 2 }+{ { 1.2 } }^{ 3 }+..+{ 1.2 }^{ 99 }-{ 100.2 }^{ 100 }$$

    $$-S=\left( 1+2+{ 2 }^{ 2 }+{ 2 }^{ 3 }+{ 2 }^{ 4 }+....+{ 2 }^{ 99 } \right) -{ 100.2 }^{ 100 }$$

    $$-S=\left( \frac { 1\left( { 2 }^{ 100 }-1 \right)  }{ 2-1 }  \right) -{ 100.2 }^{ 100 }$$

    $$-S={ 2 }^{ 100 }-1-{ 100.2 }^{ 100 }$$\\ $$-S=-1-{ 99.2 }^{ 100 }$$

    $$S=1+{ 99.2 }^{ 100 }$$
  • Question 7
    1 / -0
    Sum  of first n terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ....$$ is equal to 
    Solution

  • Question 8
    1 / -0
    If $${ S }_{ n }=\overset { n }{ \underset { r=1 }{ \Sigma  }  } { t }_{ r }=\dfrac { 1 }{ 6 } n\left( 2{ n }^{ 2 }+9n+13 \right) $$, then $$\overset { n }{ \underset { r=1 }{ \Sigma  }  } \sqrt { { t }_{ r } } $$ equals ?
    Solution

  • Question 9
    1 / -0
    The number of zeroes, at the end of $$50!$$, is
    Solution
    Solution-
    50!$$\rightarrow $$ Number of zeroes of the end
    Zeroes can be obtained by multiples of 10 
    as multiples of 5 and 2.
    5 zeroes there are many powers of 2 in 50!
    we need to find power of 5 in 50!
    Power $$ = 1(5)+1(15)+2(25)+1(35)+1(45)+1(50)$$
    $$ = 7 $$
    7 zeroes caused by 5, 15, 25, 35, 45, 50
    Total zeroes = 5+7 = 12

  • Question 10
    1 / -0
    The sum of the series $$1+2(1+1/n)+3(1+1/n)^2+....\infty$$ is given by?
    Solution
    $$S = 1+2(1+\cfrac{1}{n}) + 3(1+\cfrac{1}{n})^2+.....\infty$$
    $$S(1+\cfrac{1}{n}) = (1+\cfrac{1}{n}) + 2(1+\cfrac{1}{n})^2+.......\infty$$
    $$-\cfrac{S}{n} = 1 + (1+\cfrac{1}{n}) + (1+\cfrac{1}{n})^2+......\infty $$
    $$-\cfrac{S}{n} = \cfrac{1}{1-(1+\cfrac{1}{n})}$$
    $$S = n^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now