given series is $$1+\cfrac{1}{4\times 2!}+\cfrac{1}{16\times 4!}+\cfrac{1}{64\times 6!}+....\infty$$
We know that $${e}^{x}=1+\cfrac{x}{1!}+\cfrac{{x}^{2}}{2!}+\cfrac{{x}^{3}}{3!}+....\infty$$
Let the series be denoted by $$S$$
$$S=1+\cfrac{1}{2!}.{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }+\cfrac{1}{4!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 4 }+\cfrac{1}{6!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 6 }+....\infty$$
$$=(1+\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }+\cfrac{1}{3!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }+....\infty)-(\cfrac{1}{1!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }+\cfrac{1}{3!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 3 }+....\infty)$$
$$2S=(1+\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }+.... \infty)+(1-\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }-\cfrac{1}{3!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 3 }+....\infty)$$
By $${e}^{x}$$ expansion $${e}^{1/2}=1+\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }+....\infty)$$
$${e}^{-1/2}=1-\cfrac{1}{1!}(\cfrac{1}{2})+\cfrac{1}{2!}{ \left( \cfrac { 1 }{ 2 } \right) }^{ 2 }+...\infty$$
$$2S={e}^{1/2}+{e}^{-1/2}$$
$$S=\cfrac { \sqrt { e } +\cfrac { 1 }{ \sqrt { e } } }{ 2 } =\cfrac { e+1 }{ 2\sqrt { e } }