Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    Sum to n terms the following series :

  • Question 2
    1 / -0

    $$\sum\limits_{r = 0}^{10} {r{.^{10}}{C_r}{{.3}^r}{{\left( { - 2} \right)}^{10 - r}}} $$ is equal 

  • Question 3
    1 / -0

    The value of the expression $$\sum _{ r=0 }^{ n }{ { (-1) }^{ r } } \left( \dfrac { ^nC_r  }{^{r+3}C_r  }  \right) $$ is

  • Question 4
    1 / -0

    $$S=\tan^{-1}\left(\dfrac{1}{n^2+n+1}\right)+\tan^{-1}\left(\dfrac{1}{n^2+3n+3}\right)+.....+\tan^{-1}\left(\dfrac{1}{1+(n+19)(n+20)}\right)$$, then $$\tan S$$ is equal to?

  • Question 5
    1 / -0

    Evaluate:-
    If $$\sum\limits_{r - 0}^n {{{\left\{ {\frac{{^n{C_{r - 1}}}}{{^n{C_r}{ + ^n}{C_{r - 1}}}}} \right\}}^3} = \frac{{25}}{{24}}} $$

  • Question 6
    1 / -0

    Sum of the series
    $$S=1^{2}-2^{2}+3^{2}-4^{2}+..... -2000^{2}+2003^{2}$$ is

  • Question 7
    1 / -0

    If the expansion of $$\left( x+a \right) ^{ n }$$ if the sum of odd terms be P & sum of even terms be Q, prove that

  • Question 8
    1 / -0

    If $$\left| x \right| <$$ and $$\left| y \right| <$$ 1, then the sum of infinity of the series $$(x+y)+(x^2+xy+y^2)+(x^3+x^2y+xy^2+y^3)+.....$$ to $$\infty $$ is 

  • Question 9
    1 / -0

    Find the next term
    $$210,209,205,196,180,?$$

  • Question 10
    1 / -0

    $$\sum _{ r=1 }^{ n }{ r. } $$ $$^{2n}C_r$$ is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now