Self Studies

Sequences and Series Test - 44

Result Self Studies

Sequences and Series Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum to n terms the following series :
    Solution

  • Question 2
    1 / -0
    $$\sum\limits_{r = 0}^{10} {r{.^{10}}{C_r}{{.3}^r}{{\left( { - 2} \right)}^{10 - r}}} $$ is equal 
    Solution

  • Question 3
    1 / -0
    The value of the expression $$\sum _{ r=0 }^{ n }{ { (-1) }^{ r } } \left( \dfrac { ^nC_r  }{^{r+3}C_r  }  \right) $$ is
    Solution

  • Question 4
    1 / -0
    $$S=\tan^{-1}\left(\dfrac{1}{n^2+n+1}\right)+\tan^{-1}\left(\dfrac{1}{n^2+3n+3}\right)+.....+\tan^{-1}\left(\dfrac{1}{1+(n+19)(n+20)}\right)$$, then $$\tan S$$ is equal to?
    Solution
    $$ S = \sum_{r=0}^{19} tan^{-1} \left ( \frac{1}{1+(n+r)(n+r+1)} \right ) = tan^{-1}\left ( \frac{(n+r+1)-(n+r)}{1+(n+r)(n+r+1)} \right )$$
    $$ \Rightarrow S = \sum_{r=0}^{19} \left ( tan^{-1}(n+r+1)-tan^{-1}(n+r) \right )$$
    $$ =tan^{-1}(n+1) - tan^{-1}(n) = tan^{-1}(n+20)-tan^{-1}(n+19) $$
    $$ + tan^{-1}(n+2) - tan^{-1}(n+1)$$
    $$ tan^{-1}(n+20) - tan^{-1}(n+19)$$
    $$ \Rightarrow tan \, S = \frac{(n+20)-(n)}{1+n(n+20)} = \frac{20}{n^{2}+20n+1}$$ 
    $$\Rightarrow (C)$$

  • Question 5
    1 / -0
    Evaluate:-
    If $$\sum\limits_{r - 0}^n {{{\left\{ {\frac{{^n{C_{r - 1}}}}{{^n{C_r}{ + ^n}{C_{r - 1}}}}} \right\}}^3} = \frac{{25}}{{24}}} $$
    Solution

  • Question 6
    1 / -0
    Sum of the series
    $$S=1^{2}-2^{2}+3^{2}-4^{2}+..... -2000^{2}+2003^{2}$$ is
    Solution

  • Question 7
    1 / -0
    If the expansion of $$\left( x+a \right) ^{ n }$$ if the sum of odd terms be P & sum of even terms be Q, prove that
    Solution

  • Question 8
    1 / -0
    If $$\left| x \right| <$$ and $$\left| y \right| <$$ 1, then the sum of infinity of the series $$(x+y)+(x^2+xy+y^2)+(x^3+x^2y+xy^2+y^3)+.....$$ to $$\infty $$ is 
    Solution

  • Question 9
    1 / -0
    Find the next term
    $$210,209,205,196,180,?$$
    Solution
    $$T_1=210$$ $$,T_2=209,$$ $$T_3=205,$$ $$T_4=196,$$ $$T_5=180,$$ $$T_6=?$$

    $$T_1-T_2=1^2\\$$
    $$T_2-T_3=2^2\\$$
    $$T_3-T_4=3^2\\$$
    $$T_4-T_5=4^2\\$$
    $$T_5-T_6=5^2\\$$
    $$\implies  T_6=T_5 - 5^2=180-25=155$$
  • Question 10
    1 / -0
    $$\sum _{ r=1 }^{ n }{ r. } $$ $$^{2n}C_r$$ is equal to 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now