Self Studies

Sequences and Series Test - 46

Result Self Studies

Sequences and Series Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$14, 12, 21, 59, 231, 1149, ?$$
    Solution
    $$14,12,21,54,231,1149,..............$$
    $$14\times 1-2=14-2=12$$
    $$12\times 2-3=24-3=21$$
    $$21\times 3-4=63-4=59$$
    $$59\times 4-5=236-5=231$$
    $$231\times 5-6=1155-6=1149$$
    $$1149\times 6-7=6894-7=6887$$
    ANSWER  is C
  • Question 2
    1 / -0
    Find the next term of the series $$1728, 2744, 4096, 5832, 8000, 10648, ?$$
    Solution
    $$1728,2744,4096,5832,8000,10648.....$$
    $$12^3\rightarrow 1728$$
    $$14^3\rightarrow 2744$$
    $$16^3\rightarrow 4096$$
    $$18^3\rightarrow 5832$$
    $$20^3\rightarrow 8000$$
    $$22^3\rightarrow 10648$$
    $$24^3\rightarrow 13824$$
    ANSWER IS B
  • Question 3
    1 / -0
    Find the missing number from the given alternatives.

    Solution
    $$ 13\quad\quad 39\\26\quad\quad 78\\?\quad\quad ?$$
    The pattern satisfies
    $$x\quad\quad 3x$$
    Therefore correct option is 
    $$52\quad\quad 156$$
  • Question 4
    1 / -0
    If $$1,\ a_{1},\ a_{2},\ a_{3},......$$ and $$a_{8}$$ are nine, ninth roots of unity (taken in counter- clockwise sequence ) then $$|(2-a_{1})(2-a_{3})(2-a_{7})|=$$  
    Solution
    undefined

  • Question 5
    1 / -0
    $$8, 31, 122, 485, 1936, 7739, ?$$
    Solution

  • Question 6
    1 / -0
    The sum of infinite series $$\begin{vmatrix} 1 & 2 \\ 6 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 2 }  & 2 \\ 2 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 4 }  & 2 \\ \frac { 2 }{ 3 }  & 4 \end{vmatrix}+.........$$
    Solution

  • Question 7
    1 / -0
    If $$\dfrac{\pi}{4}-1+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{1}{13}+=0$$ then value of $$\dfrac{1}{1\times3}+\dfrac{1}{5\times7}+\dfrac{1}{9\times11}+\dfrac{1}{13\times15}+..$$ is
  • Question 8
    1 / -0
    Let $$t_{r}=\frac{r}{1+r^{2}+r^{4}}$$ then, $$\lim_{n\rightarrow \infty }\sum_{r=1}^{n}t_{r}$$ equals
    Solution
    $$t_r=\dfrac{r}{1+r^2+r^4}$$
    $$=\dfrac{r}{r^4+2r^2+1-r^2}$$
    $$=\dfrac{r}{(r^2+1)^2-r^2}=\dfrac{r}{(r^2+1-r)(r^2+1+r)}$$
    $$=\dfrac{1}{2}\dfrac{2r}{(r^2+1-r)(r^2+r+1)}$$
    $$=\dfrac{1}{2}\dfrac{(r^2+r+1)-(r^2-r+1)}{(r^2-r+1)(r^2+r+1)}$$
    $$=\dfrac{1}{2}\left[\dfrac{1}{r^2-r+1}-\dfrac{1}{r^2+r+1}\right]$$
    $$=\dfrac{1}{2}\left[\dfrac{1}{r^2-r+1}-\dfrac{1}{(r+1)^2-(r+1)+1}\right]$$
    $$\displaystyle\sum^n_{r=1}t_r=\dfrac{1}{2}\left[\dfrac{1}{1-1+1}-\dfrac{1}{(n+1)^2-(n+1)+1}\right]$$
    $$=\dfrac{1}{2}\left[1-\dfrac{1}{n^2+n+1}\right]=\dfrac{1}{2}\left[\dfrac{n^2+n+1-1}{n^2+n+1}\right]$$
    $$\displaystyle\sum t_n=\dfrac{1}{2}\left[\dfrac{1+\dfrac{1}{n}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}\right]$$
    $$\underset{n\rightarrow \infty}{lt}\displaystyle\sum t_r=\dfrac{1}{2}\left[\dfrac{1+0}{1+0+0}\right]$$
    $$=\dfrac{1}{2}$$.

  • Question 9
    1 / -0
    $$499, 622, 868, 1237, 1729, 2344, ?$$
    Solution
    $$499, 622, 868, 1237, 1729, 2344,$$ ______
    $$499+1\times 123=499+123=622$$
    $$622+2\times 123=622+146=868$$
    $$868+3\times 123=868+369=1237$$
    $$1237+4\times 123=1237+492=1729$$
    $$1729+5\times 123=1729+615=2344$$
    $$2344+6\times 123=2344+738=3082$$.

  • Question 10
    1 / -0
    the value of $$\sum\limits_{n = 1}^\infty  {\frac{{(3n + 1)}}{{n(4n + 4){4^n}}}} $$ is equal to 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now