Self Studies

Sequences and Series Test - 47

Result Self Studies

Sequences and Series Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum $$\dfrac{1}{1+1^{2}+1^{4}}+\dfrac{2}{1+2^{2}+2^{4}}+\dfrac{3}{1+3^{2}+3^{4}}+...+\dfrac{99}{1+99^{2}+99^{4}}$$ lies between

    Solution
    We have,
    $$\dfrac { 1 }{ { 1+{ 1^{ 2 } }+{ 1^{ 4 } } } } +\dfrac { 2 }{ { 1+{ 2^{ 2 } }+{ 2^{ 4 } } } } +\dfrac { 3 }{ { { 1^{ 3 } }+{ 2^{ 2 } }+{ 3^{ 4 } } } } +.........+\dfrac { { 99 } }{ { 1+{ { 99 }^{ 2 } }+{ { 99 }^{ 4 } } } }  \\ =\sum  _{ n=1 }^{ 99 }{ \dfrac { x }{ { 1+{ x^{ 2 } }+{ x^{ 4 } } } }  } \\ =\sum  _{ n=1 }^{ 99 }{ \dfrac { x }{ { { { \left( { { x^{ 2 } }+1 } \right)  }^{ 2 } }-{ x^{ 2 } } } }  } \\ =\sum  _{ n=1 }^{ 99 }{ \dfrac { { \left( { { x^{ 2 } }+x+1 } \right) -\left( { { x^{ 2 } }-x+1 } \right)  } }{ { 2\left( { { x^{ 2 } }+x+1 } \right) \left( { { x^{ 2 } }-x+1 } \right)  } }  } \\ =\dfrac { 1 }{ 2 } \sum  _{ n=1 }^{ 99 }{ \left( { \dfrac { 1 }{ { { x^{ 2 } }-x+1 } } -\dfrac { 1 }{ { { x^{ 2 } }+x+1 } }  } \right)  } \\ =\dfrac { 1 }{ 2 } \left( { \dfrac { 1 }{ 1 } -\dfrac { 1 }{ 3 } +\dfrac { 1 }{ 3 } -\dfrac { 1 }{ 7 } +\dfrac { 1 }{ 7 } +.........+\dfrac { 1 }{ { { { 99 }^{ 2 } }+99+1 } }  } \right)  \\ =\dfrac { 1 }{ 2 } \left( { 1-\dfrac { 1 }{ { 9901 } }  } \right)  \\ =\dfrac { { 4950 } }{ { 9901 } }  \\ \approx \dfrac { 1 }{ 2 } $$

    $$ \\ Hence,\, option\, D\, is\, correct\, answer.$$
  • Question 2
    1 / -0
    Find : $$12,15,21,24,30,33 , ? , ?$$
    Solution
    $$12,15,21,24,30,33,?,?$$
    $$12$$
    $$12 + 3 = 15$$
    $$15+3\times 2=21$$
    $$21+3=24$$
    $$24+3\times 2=30$$
    $$30+3=33$$
    $$33+3\times 2=39$$
    $$39+3=42$$
  • Question 3
    1 / -0
    Find : $$13,23,43,83,163 , ?$$
  • Question 4
    1 / -0
    Total number of divisors of $$N=3^{5}.5^{7}.7^{9}$$ that are of the form $$4n+1,\ n\ \ge 0$$ is  
    Solution
    $$\begin{array}{l} N={ 3^{ 5 } }\, \, { 5^{ 7 } }\, \, { 7^{ 9 } } \\ 4n+1,\, \, n>0 \\ n=0\, \, \, \, \, \, 1 \\ n=1\, \, \, \, \, \, \, \, 5 \\ h=2\, \, \, \, \, \, \, 9 \\ h=3\, \, \, \, \, \, 13 \\ =\frac { { \left( { 5+1 } \right) \left( { 7+1 } \right) \left( { 9+1 } \right)  } }{ 2 }  \\ =\frac { { 6\times 8\times 10 } }{ 2 } =240 \end{array}$$
  • Question 5
    1 / -0
    Find the missing number :

    Solution
    $$\textbf{Step 1: Observe the numbers opposite to each other}$$
                    $$ \text{We can see that the number opposite to 315 is 21. Also, } \dfrac{315}{21}=15$$
                    $$\text{Hence, we can say the missing number has at least one factor of 15 }$$
                    $$\text{We see the missing number is opposite to 15}$$
                    $$\text{Also, } 15\times15=225$$
    $$\textbf{Step 2: Verification}$$
                    $$\text{Let the missing number be x.}$$
                    $$\text{ATQ, }$$
                    $$\Rightarrow 21+15+x=261$$
                    $$\Rightarrow x=261-21-15$$
                    $$x=225$$
                    $$\text{Hence, it is verified that x=225}$$
    $$\textbf{Thus, the missing number is D 225.}$$
  • Question 6
    1 / -0
    $$23,29,47,75 , ?$$
    Solution
    $$2\underbrace { 3\quad ,\quad 2 } \underbrace { 9\quad ,\quad 4 } \underbrace { 7\quad ,\quad 7 } \underbrace { 5\quad ,\quad ? } \quad =75+35$$
             $$6$$             $$18$$            $$28$$            $$35$$
    $$\left( 2\times 3 \right) \uparrow $$  $$\left( 2\times 9 \right) \uparrow $$  $$\left( 4\times 7 \right) \uparrow $$  $$\left( 7\times 5 \right) \uparrow $$ $$=110$$
  • Question 7
    1 / -0
    $$16,40,100,250 , ?$$
    Solution

    $$16,40,100,250,?$$

    $${ \underline { 4 }  }^{ 2 },\underline { 4 } \times \underline { \left( 10 \right)  } ,{ \left( 10 \right)  }^{ 2 },\underline { 10 } \times \left( 25 \right) ,{ \left( 25 \right)  }^{ 2 }$$

    $$16,40,100,250,625$$.

  • Question 8
    1 / -0
    Find the missing number

    Solution
    $$\textbf{Step 1: Observe the numbers opposite to each other}$$
                    $$ \text{We can see that the number opposite to 196 is 14. Also, } \dfrac{196}{14}=14$$
                    $$\text{Hence, we can say the missing number has at least one factor of 14}$$
                    $$\text{We see the missing number is opposite to 154}$$
                    $$\text{Also, } 14\times11=154$$
                    $$\text{Hence, let's assume the missing number is 11}$$
    $$\textbf{Step 2: Verification}$$
                    $$\text{Let the missing number be x.}$$
                    $$\text{According to the question, }$$
                    $$\Rightarrow 14+196+x=221$$
                    $$\Rightarrow x=221-14-196$$
                    $$x=11$$
                    $$\text{Hence, it is verified that x=11}$$
    $$\textbf{Thus, the missing number is (A) 11.}$$
  • Question 9
    1 / -0
    Find the missing number.

    Solution

    $$ \textbf{ Step 1: Observing the difference between the adjacent numbers}$$

                     $$ \text{If we notice the adjacent numbers, we see } 4\times 2 -1 =7$$

                     $$ \text{Similarly, } 7 \times 2-1=13$$

                     $$ \text{Similarly, } 13\times2 -1=25$$

                     $$ \text{Similarly, } 25\times2-1=49$$

    $$ \textbf{Step 2: Calculating the missing number}$$

                    $$ \text{Thus, looking at the above observations, we can conclude the missing number will be:}$$

                    $$ \Rightarrow 49\times 2-1=97$$

    $$\textbf{Thus, the missing number is D 97}$$

  • Question 10
    1 / -0
    The sum of $$\displaystyle \sum^{\infty}_{n=1}\tan^{-1}\left(\dfrac {2}{n^{2}+n+4}\right)$$ is equal to-
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now