Self Studies

Sequences and Series Test - 52

Result Self Studies

Sequences and Series Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$n$$ is an odd integer greater than or equal to $$1$$, then the value of $$ n^3-(n-1)^3+(n-2)^3-....+(-1)^{n-1}1^3$$, is
    Solution
    The given series is
    $$S = 1^3 -2^3 +3^3 -4^3 +5^3 -6^3+...-(n-1)^3+n^3$$
    $$\because n$$ is an odd integer.
    This is the same as 
    $$S = (1^3 +2^3 +3^3 +...+n^3)-2(2^3+4^3+6^3+...+(n-1)^3)$$
    Which can be written as 
    $$S = (1^3 +2^3 +3^3 +...+n^3)-16\left(1^3 +2^3 +3^3 +...\left(\dfrac {n-1}{2}\right)^3\right)$$
    Which can now be solved using 
    $$\displaystyle\sum r^3 =\dfrac {n^2(n+1)^2}{4}$$

    $$\therefore$$ The desired answer is
    $$S = \dfrac{n^2(n+1)^2}{4} - 16\dfrac{\left(\dfrac{n-1}{2}\right)^2\left(\dfrac{n+1}{2}\right)^2}{4} = \dfrac{(n+1)^2(2n-1)}{4}$$

    Hence, option A is the correct answer.
  • Question 2
    1 / -0
    If $$ \displaystyle f(r)=1+\frac {1}{2}+\frac {1}{3}+.....+\frac {1}{r}$$ and $$f(0)=0$$, then value of $$ \displaystyle \sum_{r=1}^{n}(2r+1)f(r)$$ is
    Solution
    Since $$ \displaystyle \sum_{r=1}^{n}(2r+1)f(r)=\sum_{r=1}^{n}(r^2+2r+1-r^2)f(r)=\sum_{r=1}^{n}\left \{(r+1)^2-r^2\right \}f(r)$$
    $$ \displaystyle =\sum_{r=1}^{n}\left \{(r+1)^2f(r)-(r+1)^2f(r+1)+(r+1)^2f(r+1)-r^2f(r)\right \}$$
    $$ \displaystyle =\sum_{r=1}^{n}(r+1)^2\left \{f(r)-f(r+1)\right \}+\sum_{r=1}^{n}\left \{(r+1)^2f(r+1)-r^2f(r)\right \}$$
    $$ \displaystyle =-\sum_{r=1}^{n}\frac {(r+1)^2}{(r+1)}+\sum_{r=1}^{n-1}(r+1)^2f(r+1)+(n+1)^2f(n+1)-\sum_{r=1}^{n}r^2f(r)$$
    $$ \displaystyle =-\sum_{r=1}^{n}(r+1)+\left \{2^2f(2)+3^2f(3)+ ....+n^2f(n)\right \}+(n+1)^2f(n+1)-\left \{1^2f(1)+2^2f(2)+3^2f(3)+ .....+n^2f(n)\right \}$$
    $$\displaystyle =-\sum_{r=1}^{n}r-\sum_{r=1}^{n}1+\left((n+1)^2f(n+1)-1^2f(1)\right)=-\frac {n(n+1)}{2}-n+(n+1)^2f(n+1)-f(1)$$
    $$ \displaystyle =(n+1)^2f(n+1)-\frac {n(n+3)}{2}-1 =(n+1)^2f(n+1)-\frac {(n^2+3n+2)}{2}$$
  • Question 3
    1 / -0
    The sum to $$n$$ terms of the series $$\displaystyle \frac{3}{1^2}+\frac{5}{1^2+2^2}+\frac{7}{1^2+2^2+3^2}+...$$ is
    Solution
    The observation is important ...we can see that the numerator general term is $$2n+1$$

    while the denominator is the sum of $$n^2$$ terms so the generalized term

    $$Tn=(2n+1)/[n(n+1)(2n+1)/6]=6/[n(n+1)]=6[(1/n)-(1/(n+1))]$$

    Therefore when we add five terms we can see all terms will cancel out except the first and the last term.

    So $$S=6[1-1/(n+1)]=6n/(n+1)$$

    Option A
  • Question 4
    1 / -0
    The sum of the first $$n$$ terms of the series $$1^2+2\cdot2^2+3^2+2\cdot4^2+5^2+2\cdot6^2+..... $$ is $$\dfrac{n \left ( n+1\right )^2}{2}$$ when $$n$$ is even. 
    When $$n$$ is odd, then the sum is
    Solution
    If $$n$$ is odd, then $$ n-1$$ is even.
    $$(n-1)^{th}$$ term is $$2(n-1)^2$$ the $$n^{th}$$ term is $$n^2$$
    Hence, using the given formula is valid if $$n$$ is even, so substitute $$n-1$$ in that formula in place of $$n$$ and add $$n^2$$ 
    We get, 
    Sum $$=\dfrac{(n-1)n^2}{2} + n^2=\dfrac{n^2(n+1)}{2}$$
  • Question 5
    1 / -0
    $$\displaystyle \frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots.n$$ terms $$=$$
    Solution
    General $$\displaystyle k^{th}$$ term $$ = \dfrac{\sum_{i=1}^{k}i^3}{\sum_{i=1}^{k}(2i-1)}$$ $$\displaystyle =\frac{(k+1)^2}{4}$$

    Final answer : $$\displaystyle \sum_{k=1}^n\dfrac{(k^2+2k+1)}{4}$$

    $$\implies \displaystyle S_n = \dfrac{1}{4}\displaystyle \sum_{k=1}^n  k^2+ 2k+1$$

    We know,
    $$\sum_{i=1}^{n} k =1 + 2 + 3 +… + n = \dfrac{n(n+1)}{2}$$  (sum of first n natural numbers)
    $$  \sum_{i=1}^{n} k^2 =1^2 + 2^2 + 3^2 +… + n^2=\dfrac{n(n+1)(2n+1)}{6}$$ (sum of squares of the first n natural numbers) 

    $$\therefore S_n =\displaystyle \frac{n(n+1)(2n+1)}{24}+\frac{n(n+1)}{4}+\frac{n}{4}$$

    $$\displaystyle=n\frac{(2n^2+9n+13)}{24}$$

    Hence, option 'A' is correct.
  • Question 6
    1 / -0

    Observe the following lists List I and  List II

    (A) $$\displaystyle \sum_{n=0}^{\infty}\frac{x^{n}(\log_{e}a)^{n}}{n!}$$                                     $$(1)\displaystyle \frac{e^{x}-e^{-x}}{2}$$
    (B) $$\displaystyle \sum_{n=0}^{\infty}\frac{x^{2n}}{(2n)!}$$                                                $$(2) e^{-ax}$$
    (C) $$\displaystyle \sum_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}=$$                                    $$(3) a^{x}$$
    (D) $$\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}.(ax)^{n}}{n!}$$                                  $$(4)\displaystyle \frac{a^{x}-a^{-x}}{2}$$
                                                                           $$(5)\displaystyle \frac{e^{x}+e^{-x}}{2}$$
    The correct match of List I to List II is:
    Solution
    (A) When we expand it, we will get 

          $$1+\dfrac { { x }^{  }{ \log _{ e }{ a }  }^{  } }{ 1 } + \dfrac { { x }^{ 2 }{( \log _{ e }{ a }  })^{2 } }{ 2! }+....$$ This is a general expression for the expansion of $${ a }^{ x }$$
    So, A - 3
    (B) Expansion is given by $$1+\dfrac { { x }^{ 2 } }{ 2! } +\dfrac { { x }^{ 4 } }{ 4! } +\dfrac { { x }^{ 6 } }{ 6! } ..$$ which is $$\dfrac { { e }^{ x }+{ e }^{ -x } }{ 2 } $$
    So, B - 5

    (C) Expansion is given by $$1+\dfrac { { x }^{ 3 } }{ 3! } +\dfrac { { x }^{ 5 } }{ 5! } +\dfrac { { x }^{ 7 } }{ 7! } ..$$ and this is $$\dfrac { { e }^{ x }-{ e }^{ -x } }{ 2 } $$
    So, C - 1

    (D) Expansion is given by $$1-\dfrac { ax }{ 1! } +\dfrac { (ax)^{ 2 } }{ 2! } -\dfrac {(ax)^{3}}{ 3! }....$$ which is an expansion of  $${ e }^{ -ax }$$
    So, D - 2
  • Question 7
    1 / -0
     Sum  the  series  $$1^3+3^3+5^3+.......... $$  to  $$n$$ terms  is
    Solution
    $$n^{th}$$ term of the series will be $$(2n-1)^3$$

    $$1^3 +3^3 +5^3+.....+(2n-1)^3 = 1^3 +2^3 +3^3+4^3+.....(2n)^3 -(2^3 +4^3+6^3+......(2n)^3)$$

    $$=\left (\dfrac{2n(2n+1)}{2}\right)^2-2^3(1^3+2^3+3^3+.....+n^3)$$

    $$=n^2(2n+1)^2 - 2n^2(n+1)^2$$

    $$=4n^4+4n^3+n^2-2n^4-4n^3-2n^2$$

    $$=2n^4-n^2$$

    $$=n^2(2n^2-1)$$
  • Question 8
    1 / -0
    ABCD is a square of length a, $$a\epsilon N$$, a>1. Let $$L_{1}$$, $$L_{2}$$, $$L_{3}$$,... be points on BC such that $$BL_{1}=L_{1}L_{2}=L_{2}L_{3}=...=1$$ and $$M_{1}$$, $$M_{2}$$, $$M_{3}$$,... be points on CD such that $$CM_{1}=M_{1}M_{2}=M_{2}M_{3}=...=1$$. Then $$\sum_{n=1}^{a-1}\left ( A{L_{n}}^{2}+L_{n}{M_{n}}^{2} \right )$$ is equal to
    Solution
    $$A{ { L }_{ n } }^{ 2 }={ a }^{ 2 }+{ n }^{ 2 }\\ { { L }_{ n }{ M }_{ n } }^{ 2 }={ (a-n) }^{ 2 }+{ n }^{ 2 }\\ A{ { L }_{ n } }^{ 2 }+{ { L }_{ n }{ M }_{ n } }^{ 2 }=2{ a }^{ 2 }+{ 3n }^{ 2 }-2na$$
    Thus, the summation is:
    $$2{ a }^{ 2 }(a-1)+3.\dfrac { (a-1)(a)(2a-1) }{ 6 } -2a.\dfrac { (a-1)(a) }{ 2 } \\ =\dfrac { a }{ 2 } .(a-1).\left( 4a+2a-1-2a \right) =\dfrac { 1 }{ 2 } a.(a-1).\left( 4a-1 \right) $$

  • Question 9
    1 / -0
    The sum of n terms of the series $$1 + (1 + a) + (1 + a + a^2) + (1 + a  + a^2 + a^3) + ....$$ is
  • Question 10
    1 / -0
    If $$\displaystyle \sum_{r=1}^{n}t_{r}=\frac {n(n+1)(n+2)(n+3)}{8}$$, then $$\displaystyle \underset{n\rightarrow \infty}{ \lim} \sum_{r=1}^{n}\frac {1}{t_{r}}$$
    is equal to: 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now