Self Studies

Sequences and Series Test - 57

Result Self Studies

Sequences and Series Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum to infinity of the series:
    $$\dfrac {3}{{1}^{3}}+\dfrac {5}{{1}^{3}+{2}^{3}}+\dfrac {7}{{1}^{3}+{2}^{3}+{3}^{3}}+..$$ is-
    Solution

  • Question 2
    1 / -0
    Sum to $$n$$ terms of the series$$\dfrac { 1 }{ 1.2.3.4 } +\dfrac { 1 }{ 2.3.4.5 } +\dfrac { 1 }{ 3.4.5.6 } +..........$$, is
    Solution

  • Question 3
    1 / -0
    If $$\dfrac{x}{0.2} + \dfrac{x}{0.3} + \dfrac{x}{0.6} + \dfrac{x}{0.4} + \dfrac{x}{0.5} = 87$$, then the value of x is equal to 
    Solution

  • Question 4
    1 / -0
    The value of $$\displaystyle\sum^{100}_{r=2}\dfrac{3^r(2-2r)}{(r+1)(r+2)}$$ is equal to?
    Solution
    $$ \displaystyle S= \sum_{r = 2}^{100} \dfrac{3^{r}(2-2r)}{r(r+1)(r+2)}$$
    $$ \displaystyle S=\sum_{r = 2}^{100} \dfrac{3^{r}}{r(r+2)}-\dfrac{3^{r}+1}{(r+1)(r+2)}$$
    $$ = \dfrac{3^{2}}{2(3)} - \dfrac{3^{3}}{3 \times 4}+ \dfrac{3^{3}}{3 \times 4} - \dfrac{3^{4}}{4\times 5}+\dfrac{3^{4}}{4\times 5}+...+\left ( \dfrac{3^{100}}{100 \times 101}-\dfrac{3^{101}}{101 \times 102} \right ) $$
    $$ = \dfrac{3^{2}}{2(3)} - \dfrac{3^{101}}{101 \times 102 }$$
    $$ S = \dfrac{3}{2} - \dfrac{3^{101}}{101 \times 102}$$

  • Question 5
    1 / -0
    If $$f(x)=\displaystyle\Pi^3_{i=1}(x-a_i)+\displaystyle\sum^3_{i=1}a_i-3x$$ where $$a_i < a_{i+1}$$ for $$i=1, 2,$$ then $$f(x)=0$$ has:
    Solution

  • Question 6
    1 / -0
     

    Solution

  • Question 7
    1 / -0
    Find sum of series:
    $$1.3.5+3.5.7+5.7.9.....$$ ?
    Solution

  • Question 8
    1 / -0
    The sum of the series $$1+\dfrac{1}{1!}.\dfrac{1}{4}+\dfrac{1\cdot 3}{2!}\left(\dfrac{1}{4}\right)^{2}+\dfrac{1\cdot 3 \cdot 5}{3!} \left(\dfrac{1}{4}\right)^{3}+........$$ to $$\infty$$ is ?
    Solution

  • Question 9
    1 / -0
    For natural numbers m, n if $${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + .......$$ and $$a_1 = a_2 = 10$$, Then $$(m,n)$$ is
    Solution

  • Question 10
    1 / -0
    The value of $$(21{C}_{1}-10{C}_{1})+(21{C}_{2}-10{C}_{2})+(3{C}_{1}-10{C}^{3})+(21{C}_{4}-10{C}^{4})+.....(21{C}_{10}-10{C}_{10})$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now