Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    If $${ a }_{ n }=\sum _{ r=0 }^{ n }{ \cfrac { 1 }{ { _{  }^{ n }{ C } }_{ r } }  } $$, the value of $$\sum _{ r=0 }^{ n }{ \cfrac { n-2r }{ { _{  }^{ n }{ C } }_{ r } }  } $$

  • Question 2
    1 / -0

    Observe the pattern carefully
    $$11\times11=121$$
    $$111\times111=12321$$
    $$1111\times1111=\,?$$

  • Question 3
    1 / -0

    The sum of the series 
    $$(2)^2+2(4)^{2}+3(6)^{2}+....$$ upto $$10$$ terms is

  • Question 4
    1 / -0

    The sum of the series $$1+\frac { 1.3 }{ 6 } +\frac { 1.3.5 }{ 6.8 } +....\infty$$ is 

  • Question 5
    1 / -0

    If $$A_k=\begin{bmatrix} k & k-1\\ k-1 & k\end{bmatrix}$$ then $$|A_1|+|A_2|+..+|A_{2015}|=?$$

  • Question 6
    1 / -0

    The value of $$\sum^{10}_{x=1}\sum^{r=x-1}_{r=0}(2^{x}-2^{r})$$ is

  • Question 7
    1 / -0

    Let $$a=\dfrac{1^{2}}{1}+\dfrac{2^{2}}{3}+\dfrac{3^{2}}{5}+......+\dfrac{(1001)^{2}}{2001}$$, $$b=\dfrac{1^{2}}{3}+\dfrac{2^{2}}{5}+\dfrac{3^{2}}{7}+......+\dfrac{(1001)^{2}}{2003}$$. The closest integer of $$a-b$$ is

  • Question 8
    1 / -0

    The value of $$1 + \dfrac{x \, \log_e \, 2}{1!} + \dfrac{x^2}{2!} (\log_e 2)^2 + \dfrac{x^3}{3!} (\log_e 2)^3+ ... \infty$$s equal to 

  • Question 9
    1 / -0

    If $$z=\dfrac { 1 }{ 3 } +\dfrac { 1.3 }{ 3.6 } +\dfrac { 1.3.5 }{ 3.6.9 } +..........,\infty $$ then 

  • Question 10
    1 / -0

    Sum of the series 
    $$(1\times 2015)+(2 \times 2014)+(3\times 2013)......+(2015\times 1)$$ is equal to-

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now