Self Studies

Sequences and Series Test - 60

Result Self Studies

Sequences and Series Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The series $$\dfrac{8}{5}+\dfrac{16}{65}+\dfrac{24}{325}+.........$$ upto infinity has the sum equal to 
    Solution

  • Question 2
    1 / -0
    How many Pythagorean triangles are there with integer sides and one leg is Ramanujan Number 1729 .
  • Question 3
    1 / -0
    Find the missing number, if a certain rule is followed
    $$1$$$$9$$?
    $$2$$$$12$$$$14$$
    $$3$$$$117$$$$105$$
     either row-wise or column-wise.
    Solution

  • Question 4
    1 / -0
    $$\sum\limits_{r = 1}^n {{{\sin }^{ - 1}}\left( {\frac{{\sqrt r  - \sqrt {r - 1} }}{{\sqrt {r\left( {r + 1} \right)} }}} \right)} $$ is equal to 
    Solution

  • Question 5
    1 / -0
    Let $$A$$ be the sum of the first $$20$$ terms and $$B$$ be the sum of the first $$40$$ terms of the series $$1$$ + $$2.2^2$$ + $$3^2$$ + $$2.4^2$$ + $$5^2+2.6^2$$ +......... Find the value of $$A$$.
    Solution
    Sum of first $$20$$ terms -
    $$\Rightarrow \left( { 1 }^{ 2 }+{ 3 }^{ 2 }+\_ \_ \_ \_ +{ 19 }^{ 2 } \right) +2\left( { 2 }^{ 2 }+{ 4 }^{ 2 }+\_ \_ \_ \_ +{ 20 }^{ 2 } \right) $$
    $$\Rightarrow A=\left( { 1 }^{ 2 }+{ 2 }^{ 2 }+3^2\_ \_ \_ \_ +{ 19 }^{ 2 }+20^2 \right) +\left( { 2 }^{ 2 }+{ 4 }^{ 2 }+\_ \_ \_ \_ +{ 20 }^{ 2 } \right) $$
    $$\Rightarrow A=\dfrac{20\times 41\times 21}{6}+1^2\left( { 1 }^{ 2 }+{ 2 }^{ 2 }+\_ \_ \_ \_ +{ 10 }^{ 2 } \right) $$
    $$\Rightarrow A=2870+4\times \dfrac{10\times 11\times 21}{6}$$
    $$\Rightarrow A=2870+1540$$
    $$\Rightarrow A=4410.$$
    Hence, the answer is $$4410.$$

  • Question 6
    1 / -0
    If $$1^{2}+2^{2}+3^{2}++(2003) ^{2}=(2003)(4007)(334)$$ and $$(1)(2003)+ (2)(2002)= (2003)(334)(x)$$ then $$x$$ equals
    Solution

  • Question 7
    1 / -0
    If $$\left( { 1-y } \right) ^{ 35 }\left( 1+y \right) ^{ 45 }={ A }_{ 0 }+{ A }_{ 1 }Y+{ A }_{ 2 }{ Y }^{ 2 }+{ A }_{ 3 }{ Y }^{ 3 }+.....+{ A }_{ 80 }{ Y }^{ 80 },$$ then
  • Question 8
    1 / -0
    If $$n\in N$$ then $$\displaystyle \sum \limits_{ r=0 }^{ n }{ { \left( -1 \right)^r  }\;^{ n }{ C }_{ 2 } } \left[ \dfrac { 1 }{ { 2 }^{ r} }+ \dfrac { { 3 }^{ r } }{ { 2 }^{ 2r } }+ \dfrac { { 7 }^{ r } }{ { 2 }^{ 3r } } +\;.\;.\;.\;\;upto\quad m\quad terms \right] $$ is equal to
    Solution

  • Question 9
    1 / -0
    If $$ '-'$$ denotes $$'\div ',\ '\div '$$ denotes $$'\times ',\ '+'$$ denotes' - 'and $$'\times '$$ denotes $$'+'$$, then find the value of $$116+9\div 52-4\times 5$$.
    Solution
    $$-$$ denoted $$\div$$
    $$\div$$ denoted $$\times $$
    $$+$$ denoted $$-$$
    $$\times $$ denoted $$+$$       $$\boxed{BODMAS}$$
    $$116+9\div 52-4\times 5$$
    $$116-9\times 52\div 4+5$$
    $$116-9\times 13+5$$
    $$116-117+5$$
    $$116-112=4$$
  • Question 10
    1 / -0
    $$1+\dfrac{1}{2}(1+2)+\dfrac{1}{3}(1+2+3)+\dfrac{1}{4}(1+2+3+4)+.....$$ upto $$20$$ terms is
    Solution
    Given
    $$S=1+\cfrac{1}{2}(1+2)+\cfrac{1}{3}(1+2+3)+.....+\cfrac{1}{20}(1+2+3+....+20)$$
    $$\displaystyle=\sum _{ n=1 }^{ 20 }{ \cfrac { 1 }{ n }  } \sum { n } $$
    $$\displaystyle \sum _{ n=1 }^{ 20 }{ \cfrac { 1 }{ n }  } .\cfrac{n(n+1)}{2}=\cfrac{1}{2}\sum _{ n=1 }^{ 20 }{ (n+1) } $$
    $$\cfrac { 1 }{ 2 } { \left[ \cfrac { n(n+1) }{ 2 } +n \right]  }_{ 0 }^{ 20 }$$
    $$=\cfrac{1}{2}\left[ \cfrac { 20(21) }{ 2 } +20 \right] $$
    $$=5(21)+10=115$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now