Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    Find the missing term in the series given below. $$12,\ 13,\ 18,\ 19,\ 24,\ 25 $$?

  • Question 2
    1 / -0

    The sum of first $$9$$ terms of the series
    $$\dfrac { { 1 }^{ 3 } }{ 1 } +\dfrac { { 1 }^{ 3 }+{ 2 }^{ 3 } }{ 1+3 } +\dfrac { { 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 } }{ 1+3+5 } +\dots$$

  • Question 3
    1 / -0

    Sum of the series  $$ S = 1^{2}-2^{2}+3^{2}-4^{2}+......-2002^{2}+2003^{2}$$ is

  • Question 4
    1 / -0

    If $$\dfrac{1}{1^{2}}+\dfrac{1}{2^{2}}+\dfrac{1}{3^{2}}+........\infty =\dfrac{\pi^{2}}{6}$$ then $$\dfrac{1}{1^{2}}+\dfrac{1}{3^{2}}+\dfrac{1}{5^{2}}+......\infty$$

  • Question 5
    1 / -0

    Sum of series $$\displaystyle \sum^{n}_{r=1}(r^{2}+1)_{r!}$$ is

  • Question 6
    1 / -0

    Sum of the series 
    $$1+2.2+3.2^{2}+...+100.2^{10}=$$

  • Question 7
    1 / -0

    $$\dfrac {1}{1.4}+\dfrac {1}{4.7}+\dfrac {1}{7.10}+...+\dfrac {1}{(3n-5)(3n-2)}$$

  • Question 8
    1 / -0

    The sum of the series $$1+\frac { 1.3 }{ 6 } +\frac { 1.3.5 }{ 6.8 } +...\infty $$ is 

  • Question 9
    1 / -0

    Sum series $$S=1+\frac{3}{2}+\frac{5}{2^{2}}+\frac{7}{2^{3}}+....\infty $$ is 

  • Question 10
    1 / -0

    The $${ 2006 }^{ th }$$ digit in the sequence $$12345678910111213$$.....is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now