Self Studies

Sequences and Series Test - 65

Result Self Studies

Sequences and Series Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum of the series $$S={ 1 }^{ 2 }-{ 2 }^{ 2 }+{ 3 }^{ 2 }-{ 4 }^{ 2 }+......{ 2008 }^{ 2 }+{ 2009 }^{ 2 }$$.
    Solution

  • Question 2
    1 / -0
    If in a progression $${a_1},{a_2},{a_3},...,etc.,\left( {{a_r} - {a_{r + 1}}} \right)$$ bears a constant ratio with $${a_r}.{a_{r + 1}}$$ then the term of the progression are in 
    Solution

  • Question 3
    1 / -0
    Suppose n be integer than 1, let $$a_n=\frac 1{\log _n2002}$$. Suppose $$b=a_2+a_3+a_4+a_5$$ and $$c=a_{10}+a_{11}+a_{13}+a_{14}$$, Then (b-c) equals
    Solution

  • Question 4
    1 / -0
    If $$ (20)^{19}+2(21)(20)^{18}+3(21)^{2}(20)^{17} $$ $$ +\ldots+20(21)^{19}=k(20)^{19} $$ then $$  k  $$ is equal to
    Solution

  • Question 5
    1 / -0
    If $$\frac { 48 }{ (2)(3) } +\frac { 47 }{ (3)(4) } +\frac { 46 }{ (4)(5) } +........+\frac { 2 }{ (48)(49) } +\frac { 1 }{ (49)(50) } =\frac { 51 }{ 2 } +k(1+\frac { 1 }{ 2 } +\frac { 1 }{ 3 } +.....+\frac { 1 }{ 50 } )$$, then K equals
    Solution

  • Question 6
    1 / -0
    $${ C }^{ 2n }{ C }_{ n }-{ { C }_{ 1 } }^{ 2n-2 }{ C }_{ n }+{ { C }_{ 2 } }^{ 2n-4 }{ C }_{ n }...$$ equals to 
    Solution

  • Question 7
    1 / -0
    $${\log _5}2,\,\,{\log _6}\,2,\,\,{\log _{12}}\,\,2\,\,$$ are in 
    Solution

  • Question 8
    1 / -0
    $$\text{Find the value of   } \log \sin 1^{\circ} . \log \sin 2^{\circ} \ldots \ldots \log \sin 179^{\circ} $$
    Solution
    $$\textbf{Step-1: Apply standard angle of trigonometry function to get the required unknown.}$$

                     $$\text{We have, }$$

                     $$\log \sin 1^{\circ} . \log \sin 2^{\circ} \ldots \ldots \log \sin 179^{\circ} $$

                     $$\text{Above expression can be rewritten as}$$

                     $$\log \sin 1^{\circ} . \log \sin 2^{\circ} \ldots \log\sin 90^{\circ}\ \ldots \log \sin 179^{\circ} $$

                     $$\Rightarrow$$ $$0$$                 $$\textbf{[As log 1 = 0 and sin}$$ $$\boldsymbol{90^{\circ} = 0]}$$

    $$\textbf{Hence, option- B is correct answer}$$
  • Question 9
    1 / -0
    The value of 1+$${ i }^{ 1 }+{ i }^{ 4 }+{ i }^{ 5 }+.......{ i }^{ 2n }$$ is : 
    Solution

  • Question 10
    1 / -0
    Find the A.M. of the series $$1,2,4,8,16 , \ldots , 2 ^ { n }$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now