Self Studies

Binomial Theorem Test - 78

Result Self Studies

Binomial Theorem Test - 78
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Consider the expansion of \((8 x+2 y)^{23}\). Find the ratio between the eighth and the seventh terms.

    Solution

    Given expression is\((8 x+2 y)^{23}\).

    The formula for the general term of the binomial expansion of \((a+b)^{n}\) is:

    \(T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}\)

    Therefore, we can write the general term of the expansion of \((8 x+2 y)^{23}\) by setting \(a=8 x, b=2 y\), and \(n=23\) as follows:

    \(T_{r+1}={ }^{23} C_{r}(8 x)^{23-r}(2 y)^{r}\)

    \(={ }^{23} C_{r} 8^{23-r} x^{23-r} 2^{r} y^{r}\)

    Therefore, the ratio between the eighth and seventh term is given by:

    \(\frac{T_{8}}{T_{7}}=\frac{{ }^{23} C_{7} 8^{23-7} 2^{7} x^{23-7} y^{7}}{{ }^{23} C_{6} 8^{23-6} 2^{6} x^{23-6} y^{6}}\)

    Using the rules of exponents, we can simplify this to:

    \(\frac{T_{8}}{T_{7}}=\frac{{ }^{23} C_{7} 2 y}{{ }^{23} C_{6} 8 x}\)

    \(=\frac{{ }^{23} C_{7} y}{{ }^{23} C_{6} 4 x}\)

    The ratio of consecutive combinations is given by:

    \(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}\)

    \(\frac{{ }^{23} C_{7}}{{ }^{23} C_{6}}=\frac{23-7+1}{7}=\frac{17}{7}\)

    Substituting this into the equation above, we have

    \(\frac{T_{8}}{T_{7}}=\frac{17 y}{7 \times 4 x}\)

    \(=\frac{17 y}{28 x}\)

  • Question 2
    1 / -0

    If \(a_{1}, a_{2}, a_{3}\) and \(a_{4}\) are 4 consecutive terms in the expansion of \((1+x)^{n}\), then \(\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\) ?

    Solution

    Let \(a_{1}, a_{2}, a_{3}\) and \(a_{4}\) be the coefficients of 4 consecutive terms viz. the rth, \((r+1)\) th, \((r+2)\) th and \((r+3)\) th terms.

    Then, \(a_{1}={ }^{n} C_{r-1}, a_{2}=" C_{r}, a_{3}={ }^{n} C_{r+1}\) and \(a_{4}={ }^{n} C_{t-2}\). Now,

    \(\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\frac{1}{1+\frac{a_{2}}{a_{1}}}+\frac{1}{1+\frac{a_{4}}{a_{3}}}\)

    \(=\frac{1}{1+\frac{{ }^{n} C_{+}}{{ }^{n} C_{r-1}}}+\frac{1}{1+\frac{{ }^{n} C_{r+2}}{{ }^{n} C_{r+1}}}\)

    \(=\frac{1}{1+\frac{n-r+1}{r}}+\frac{1}{1+\frac{n-r-1}{r+2}}\)

    \(=\frac{r}{n+1}+\frac{r+2}{n+1}\)

    \(=\frac{2 \cdot(r+1)}{n+1}\)

  • Question 3
    1 / -0

    In the expansion of \(\left(x^{3}-\frac{1}{x^{2}}\right)^{15}\), the constant term, is:

    Solution

    Given:

    \(\left(x^{3}-\frac{1}{x^{2}}\right)^{15}\)

    Let \((r+1)^{t h}\) term be the constant term in the expansion of \(\left(x^{3}-\frac{1}{x^{2}}\right)^{15}\).

    We know that in the binomial expansion of \((a+x)^{n}\), we have,

    \(T_{r+1}={ }^{n} C_{r} x^{n-r} a^{r}\)

    \(\therefore T_{r+1}={ }^{15} C_{r}\left(x^{3}\right)^{15-r}\left(-\frac{1}{x^{2}}\right)^{r}\)

    \(T_{r+1}={ }^{15} C_{r} x^{45-5 r}(-1)^{r}\) is independent of \(x\). If:

    \(45-5 r=0\)

    \(\Rightarrow r=9\)

    Thus, \(10^{\text {th }}\) term is independent of \(x\) and is given by

    \(T_{10}={ }^{15} C_{9}(-1)^{9}\)

    \(=-{ }^{15} C_{9}\)

  • Question 4
    1 / -0

    Find the coefficients of the term independent of \(x\) in the expansion of \(\left(\frac{x^{3 / 2}-1}{x+1+x^{1 / 2}}-\frac{x^{3 / 2}+1}{x+1-x^{1 / 2}}\right)^{5}\).

    Solution

    Given:\(\frac{x^{3 / 2}-1}{x+1+x^{12}}-\frac{x^{32}+1}{x+1-x^{12}}\)

    \(=\frac{\left(x^{12}\right)^{3}-1}{\left(x^{12}\right)^{2}+x^{12}+1}-\frac{\left(x^{1 / 2}\right)^{3}+1}{\left(x^{12}\right)^{2}-x^{12}+1} \)

    \(=\frac{\left(x^{12}-1\right)\left\{\left(x^{12}\right)^{2}+x^{1 / 2}+1\right\}}{\left(x^{12}\right)^{2}+x^{12}+1}-\frac{\left(x^{1 / 2}+1\right)\left\{\left(x^{12}\right)^{2}-x^{12}+1\right\}}{\left(x^{12}\right)^{2}-x^{12}+1} \)

    \(=\left(x^{12}-1\right)-\left(x^{12}+1\right) \)\(=-2\)

    So, \(\left(\frac{x^{3 / 2}-1}{x+1+x^{1 / 2}}-\frac{x^{3 / 2}+1}{x+1-x^{1 / 2}}\right)^{5}=(-2)^{5}\)\(=-32\)

    So, the expansion has only one term which is \(-32\) and independent of \(x\).

  • Question 5
    1 / -0

    In the expansion of \((1+a x)^{n}\), the first three terms are respectively \(1,12 \mathrm{x}\) and \(64 \mathrm{x}^{2}\). What is \(\mathrm{n}\) equal to:

    Solution

    Given:

    \({ }^{n} C_{0}=1\)

    \({ }^{n} C_{1}(a x)=12 x \).....(1)

    \({ }^{n} C_{2}(a x)^{2}=64 x^{2}\).....(2)

    The first three terms in the expansion of \((1+a x)^{n}\) are \({ }^{n} C_{0},{ }^{n} C_{1}(a x),{ }^{n} C_{2}(a x)^{2}\).

    From (1)

    \({ }^{n} C_{1}(a x)=12 x \)

    \(\Rightarrow \frac{n ! a}{11 \cdot(n-1) !}=12\)

    \(\Rightarrow n a=12\)

    \(\Rightarrow a=\frac{12}{n}\).....(3)

    From (2)

    \({ }^{n} C_{2}(a x)^{2}=64 x^{2}\)

    \(\Rightarrow { }^{n} C_{2} \cdot(a)^{2}-64\)

    \(\Rightarrow \frac{n !}{(n-2) ! 21}\left(a^{2}\right)=64\)

    \(\Rightarrow \frac{n \cdot(n-1)\left(a^{2}\right)}{2}=64\).....(4)

    Put the value from (3) into (4).

    \(\frac{n(n-1)}{2} \times\left(\frac{144}{n^{2}}\right)=64 \)

    \(\Rightarrow \frac{n-1}{n}=\frac{64}{72}=\frac{8}{9}\)

    \(\Rightarrow 9 n-9=8 n\)

    \(\Rightarrow n=9\)

  • Question 6
    1 / -0

    If \(\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{12} x^{12}\), then the expression \(a_{2}+\) \(a_{4}+a_{6}+\ldots \ldots+a_{12}\) has the value:

    Solution

    Given:

    \(\left(1+x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots \ldots+a_{12} x^{12}\)

    Put \(\mathrm{x}=1\) in the given equation

    \(0=1+\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots .+\mathrm{a}_{12}\).....(1)

    Put \(\mathrm{x}=-1\) in the given equation

    \((-2)^{6}=1-\mathrm{a}_{1}+\mathrm{a}_{2}-\mathrm{a}_{3}+\ldots+\mathrm{a}_{12}\).....(2)

    Adding (1) and (2), we get

    \(0+(-2)^{6}=\left(1+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{12}\right)+\left(1-\mathrm{a}_{1}+\mathrm{a}_{2}-\mathrm{a}_{3} \ldots \ldots+\mathrm{a}_{12}\right) \)

    \(\Rightarrow 64=2\left(1+\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots .+\mathrm{a}_{12}\right) \)

    \(\Rightarrow 1+\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots \ldots+\mathrm{a}_{12}=32 \)

    \(\Rightarrow \mathrm{a}_{2}+\mathrm{a}_{4}+\ldots \ldots+\mathrm{a}_{12}=31\)

  • Question 7
    1 / -0

    The number of terms in the expansion of \(\left(1+3 x+3 x^{2}+x^{3}\right)^{6}\) is:

    Solution

    Given:

    \(\left(1+3 x+3 x^{2}+x^{3}\right)^{6}\)

    \(=\left[(1+\mathrm{x})^{3}\right]^{6} \)

    \(=[1+\mathrm{x}]^{6(3)} \)

    \(=(1+\mathrm{x})^{18}\)

    So, total number of terms will be \(18+1=19\) terms.

  • Question 8
    1 / -0

    In the binomial expansion of \((a+b)^{n}\), the coefficients of the \(3^{\text {rd }}\) and \(15^{\text {th }}\) terms are equal to each other. Find value of \(n\) :

    Solution

    Given expression is \((a+b)^{n}\).

    The coefficients of \(3^{\text {rd }}\) and \(15^{\text {th }}\) terms in the binomial expansion of \((a+b)^{n}\) are \({ }^{n} C_{2}\) and \({ }^{n} C_{14}\) respectively. It is given that:

    Coefficient of \(3^{\text {rd }}\) term in \((a+b)^{n}=\) coefficient of \(15^{\text {th }}\) term in \((a+b)^{n}\)

    \({ }^{n} C_{2} ={ }^{n} C_{14} \) \(\left[\because{ }^{n} C_{x}={ }^{n} C_{y} \rightarrow x=y, \text { or } x+y=n\right]\)

    So,

    \(n =2+14 \)

    \(=16 \)

  • Question 9
    1 / -0

    Find the coefficient of \(x^{4}\) in the expansion of \(\left(1+x+x^{2}+x^{3}\right)^{11}\).

    Solution

    Given:

    \(\left(1+x+x^{2}+x^{3}\right)^{11}\).

    By expanding given equation using expansion formula we can get the coefficient \(x^{4}\).

    \( 1+x+x^{2}+x^{3}\)

    \(\Rightarrow(1+x)+x^{2}(1+x)\)

    \(\Rightarrow(1+x)\left(1+x^{2}\right)\)

    So,

    \(\left(1+x+x^{2}+x^{3}\right)^{11}=(1+x)^{11}\left(1+x^{2}\right)^{11}\)

    \(=1+{ }^{11} C_{1} x^{2}+{ }^{11} C_{2} x^{2}+{ }^{11} C_{3} x^{3}+{ }^{11} C_{4} x^{4} \ldots \ldots\)

    \(=1+{ }^{11} C_{1} x^{2}+{ }^{11} C_{2} x^{4}+\ldots \ldots\)

    To find term in from the product of two brackets on the right-hand-side, consider the following products terms as,

    \(=1 \times{ }^{11} C_{2} x^{4}+{ }^{11} C_{2} x^{2} \times{ }^{11} C_{1} x^{2}+{ }^{11} C_{4} x^{4}\)

    \(\Rightarrow\left[{ }^{11} C_{2}+{ }^{11} C_{2} \times{ }^{11} C_{1}+{ }^{11} C_{4}\right] x^{4}\)

    \(\Rightarrow[55+605+330] x^{4}\)

    \(\Rightarrow 990 x^{4}\)

    So,

    The coefficient of \(x^{4}\) is 990.

  • Question 10
    1 / -0

    The smallest natural number \(n\), such that the coefficient of \(x\) in the expansion of \(\left(x^{2}+\frac{1}{x^{3}}\right)^{n}\) is \({ }^{n} C_{23}\), is:

    Solution

    Given:

    \(\left(x^{2}+\frac{1}{x^{3}}\right)^{n}\)

    General term in the expansion of \((a+b)^{n}\) is given by:

    \(T_{(r+1)}={ }^{n} C_r \times a^{n-7} \times b^{r}\)

    So,

    \(T_{r+1}={ }^{n} C_{r}\left(x^{2}\right)^{n-7}\left(\frac{1}{x^{3}}\right)^{r}\)

    \(\Rightarrow T_{r+1}={ }^{n} C_{r} x^{2 n-5 r}\)

    So, \(2 n-5 r=1\).....(1)

    According to question:

    \({ }^{n} C_{r}={ }^{n} C_{23}\)

    so, \(r=23\) or \(n-r=23 \quad \ldots\)(2)

    From (1) and (2),

    Minimum value is \(n=38\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now