Self Studies

Binomial Theorem Test - 79

Result Self Studies

Binomial Theorem Test - 79
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of the term independent of \(x\) in the expansion of \(\left(x^{2}-\frac{1}{x}\right)^{9}\) is:

    Solution

    Given:

    \(\left(x^{2}-\frac{1}{x}\right)^{9}\)

    General term: General term in the expansion of \((x+y)^{n}\) is given by

    \(\mathrm{T}_{(\mathrm{r}+1)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times \mathrm{x}^{\mathrm{n}-\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}\)

    \(\Rightarrow \mathrm{T}_{(\mathrm{r}+1)}={ }^{9} \mathrm{C}_{\mathrm{r}} \times\left(\mathrm{x}^{2}\right)^{9-\mathrm{r}} \times\left(\frac{-1}{\mathrm{x}}\right)^{\mathrm{r}}\)

    \(={ }^{9} \mathrm{C}_{r}\cdot \mathrm{x}^{18-2 \mathrm{r}}(-1)^{\mathrm{r}} x^{-r}\)

    \(=(-1)^{r}\cdot{ }^{9} \mathrm{C}_{r} \mathrm{x}^{18-3 r}\)

    For the term independent of \(x\), power of \(x\) should be zero

    Therefore, \(18-3 r=0\)

    \(\therefore \mathrm{r}=6\)

    So, the value is \((-1)^{6}\cdot{ }^{9} \mathrm{C}_{6}=\frac{9!}{3!\times 6!}\)

    \(=\frac{7×8×9}{3×2×1}\)

    \(=\frac{504}{6}=84\)

  • Question 2
    1 / -0

    The coefficient of \(x^{n}\) in the expansion of \(\left(\frac{1+x}{1-x}\right)^{2}\), is:

    Solution

    The expression \(\left(\frac{1+x}{1-x}\right)^{2}\) can be written as:

    \(=(1+x)^{2} \times(1-x)^{-2} \)

    \(=\left(1+2 x+x^{2}\right)\left(1+{ }^{2} C_{1} x+{ }^{3} C_{2} x^{2}+\ldots{ }^{2+(n-1)} C_{n} x^{n}+\ldots\right) \)

    \(=\left(1+2 x+x^{2}\right)\left(1+{ }^{2} C_{1} x+{ }^{3} C_{2} x^{2}+\ldots+{ }^{n-1} C_{n-2} x^{n-2}+{ }^{n} C_{n-1} x^{n-1}+{ }^{n+1} C_{n} x^{n}+\ldots\right)\)

    \(x^{n}\) will be obtained by multiplying \(\left(1\right.\) and \(\left.{ }^{n+1} C_{n} x^{n}\right)\) and \(\left(2 x\right.\) and \(\left.{ }^{n} C_{n-1} x^{n-1}\right)\) and \(\left(x^{2}\right.\) and \({ }^{n-1} C_{n-2} x^{n-}\) \({ }^{2}\) ).

    \(\therefore\) Coefficient of \(x^{n}\) will be: \(\left(1 \times{ }^{n+1} C_{n}\right)+\left(2 \times{ }^{n} C_{n-1}\right)+\left(1 \times{ }^{n-1} C_{n-2}\right)\)

    \(={ }^{n+1} C_{n}+2 \times{ }^{n} C_{n-1}+{ }^{n-1} C_{n-2}\)

  • Question 3
    1 / -0

    For positive integers \(\mathrm{r}>1, \mathrm{n}>2\), the coefficient of \((3 \mathrm{r})^{\mathrm{th}}\) and \((\mathrm{r}+2)^{\text {th }}\) terms in the binomial expansion of \((1+\mathrm{x})^{2 \mathrm{n}}\) are equal, then:

    Solution

    Given:

    The binomial coefficients of \((3 r-1)\) and \((r+2)\) th terms are equal.

    3rd term in the expansion of \((1+x)^{2 n}\)

    \(={ }^{2 \mathrm{n}} \mathrm{C}_{3 \mathrm{r}-1} \mathrm{x}^{3 \mathrm{r}-1}\)

    \((r+2)\) th term in the expansion of \((1+x)\)

    \(={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}+1} \mathrm{x}^{\mathrm{r}+1}\)

    According to question:

    \({ }^{2 \mathrm{n}} \mathrm{C}_{3 \mathrm{r}-1}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}+1}\)

    \(\Rightarrow 3 \mathrm{r}-1=\mathrm{r}+1\)

    So, \(2 \mathrm{n}=(3 \mathrm{r}-1)+(\mathrm{r}+1)\)

    \( 2 \mathrm{r}=2\) or \(2 \mathrm{n}=4 \mathrm{r}\)

    \(\Rightarrow \mathrm{r}=1\) or \(\mathrm{n}=2 \mathrm{r}\)

    But \(\mathrm{r}>1\)

    Therefore, \(\mathrm{n}=2 \mathrm{r}\)

  • Question 4
    1 / -0

    The total number of terms in the expansion of \((x+a)^{47}-(x-a)^{47}\) after simplification is:

    Solution

    Given:

    \((x+a)^{47}-(x-a)^{47}\)

    When we expand the above equation using binomial expansion

    \((\mathrm{x}+\mathrm{y})^{\mathrm{n}}=\left(\sum_{\mathrm{k}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} \mathrm{y}^{\mathrm{n}-\mathrm{k}}\right)\)

    So the above equation becomes

    \((\mathrm{x}+\mathrm{a})^{47}=\left(\sum_{\mathrm{k}=0}^{47}{ }^{47} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} \mathrm{a}^{47-\mathrm{k}}\right) \)

    \((\mathrm{x}-\mathrm{a})^{47}=\left(\sum_{\mathrm{k}=0}^{47}{ }^{47} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}(-\mathrm{a})^{47-\mathrm{k}}\right)\)

    \((x+a)^{47} \rightarrow\) There are 48 terms in the expansion and all are positive.

    \((x-a)^{47} \rightarrow\) There are 48 terms in the expansion.

    The terms with odd powers of a will be cancelled and those with even powers of a will add up.

    24 terms will be positive and 24 negative in the expansion of \((x-a)^{47}\)

    48 terms positive- [ 24 terms negative and 24 terms positive]

    \(=48\) terms positive \(+24\) terms negative \(+24\) terms positive \(=24\) terms

  • Question 5
    1 / -0

    The number of terms which are free from radical signs in the expansion of \(\left(\mathrm{y}^{\frac{1}{5}}+\mathrm{x}^{\frac{1}{10}}\right)^{55}\) are:

    Solution

    Given expansion \(\left(\mathrm{y}^{\frac{1}{5}}+\mathrm{x}^{\frac{1}{10}}\right)^{55}\)

    In the expansion of \(\left(\mathrm{y}^{\frac{1 }{ 5}}+\mathrm{x}^{\frac{1 }{ 10}}\right)^{55}\), the general term is:

    \(\mathrm{T}_{\mathrm{r}+1}={ }^{55} \mathrm{C}_{\mathrm{r}}\left(\mathrm{y}^{\frac{1}{ 5}}\right)^{55-\mathrm{r}}\left(\mathrm{x}^{\frac{1 }{ 10}}\right)^{\mathrm{r}}\)

    \(={ }^{55} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{y}^{11-\frac{\mathrm{r} }{ 5}} \mathrm{x}^{\frac{\mathrm{r} }{ 10}}\)

    This \(T_{\mathrm{r}+1}\) will be independent of radicals if the exponents \(\frac{\mathrm{r} }{ 5}\) and \(\frac{\mathrm{r} }{ 10} \) are integers, for \(0 \leq \mathrm{r} \leq 55\) which is possible only when \(\mathrm{r}=0,10,20,30,40,50\).

    \(\therefore\) There are six terms viz. \(\mathrm{T}_{1}, \mathrm{~T}_{11}, \mathrm{~T}_{21}, \mathrm{~T}_{31}, \mathrm{~T}_{41}, \mathrm{~T}_{51}\), which are independent of radicals.

  • Question 6
    1 / -0

    Find the number of terms in the expansion of \((2 \mathrm{x}+3 \mathrm{y}+\mathrm{z})^{7}\).

    Solution

    Given expression is \((2 \mathrm{x}+3 \mathrm{y}+\mathrm{z})^{7}\).

    Number of dissimilar terms in the expansion of \(\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots \ldots+\right.\) \(\left.\mathrm{x}_{\mathrm{r}}\right)^{\mathrm{n}}\) is \({ }^{\mathrm{n}+\mathrm{r}-1} \mathrm{C}_{\mathrm{n}}\).

    So in \((2 x+3 y+z)^{7}\), we have \(r=3\) and \(n=7\)

    Thus number of terms in the expansion of \((2 x+3 y+z)^{7}\) is \(^{7+3-1} C_{7}={ }^{9} C_{7}\)

    \(=\) 36

  • Question 7
    1 / -0

    If the coefficient of \(x\) in the expansion of \(\left(x^{2}+\frac{\lambda}{x}\right)^{5}\) is 270 , then the value of \(\lambda\) is:

    Solution

    Given for the expression \(\left(x^{2}+\frac{\lambda}{x}\right)^{5}, n=5\)

    General term in the expansion of \((a+b)^{n}\) is given by:

    \(\mathrm{T}_{(\mathrm{r}+1)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times \mathrm{a}^{\mathrm{n}-\mathrm{r}} \times \mathrm{b}^{\mathrm{r}}\)

    \(T_{r+1}={ }^{5} C_{r}\left(x^{2}\right)^{5-r}\left(\frac{\lambda}{x}\right)^{\mathrm{r}}\)

    \(={ }^{5} C_{r} \lambda^{r} x^{10-3 r}\)

    For the term \(x^{}, \)

    \(10-3 r=1 \)

    \(\Rightarrow r=3\)

    \(\therefore{ }^{5} \mathrm{C}_{3} \cdot\lambda^{3}=270\)

    \(\Rightarrow \frac{5!}{2!×3!} \cdot\lambda^{3}=270\)

    \(\Rightarrow \frac{5×4×3×2×1}{2×1×3×2×1} \cdot\lambda^{3}=270\)

    \(\Rightarrow \frac{5×4}{2×1} \cdot\lambda^{3}=270\)

    \(\Rightarrow 10 \cdot\lambda^{3}=270\)

    \(\Rightarrow \lambda^{3}=27\)

    \(\Rightarrow \lambda=3\)

  • Question 8
    1 / -0

    Find the middle terms in the expansion of \(\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}\).

    Solution

    Given:

    \(\left(1+3 x+3 x^{2}+x^{3}\right)^{2 n}\)

    \(=(1+x)^{6 n}\)

    Here, \(n\) is an even number.

    So the middle terms is \((\frac{6 n}{2} { +1})=(3 n+1)^{\text {th }}\) term

    So terms \((3 n+1)^{\text {th }}\) term is:

    \(T_{3 n+1}={ }^{6 n} C_{3 n} x^{3 n} \)

    \(=\frac{(6 n) !}{(3 n!)^{2}} x^{3 n}\)

  • Question 9
    1 / -0

    The constant term in the expansion of \(\left(x-\frac{1}{x}\right)^{10}\) is:

    Solution

    Given expression is \(\left(x-\frac{1}{x}\right)^{10}\).

    General term in the expansion of \((a+b)^{n}\) is given by:

    \(T_{(r+1)}={ }^{n} C_{,} \times a^{n-7} \times b^{r}\)

    In the given binomial expression \(\left(x-\frac{1}{x}\right)^{10}, n=10, a=x\) and \(b=\frac{-1}{x}\)

    \(\therefore T_{r-1}={ }^{10} C_{r} x^{10-r}\left(\frac{-1}{x}\right)^{r}\)

    \(={ }^{10} C_{n}(-1)^{r} x^{10-2 r}\)

    For the term to be independent of \(x\), we must have

    \(10-2 r=0\)

    \(\Rightarrow r=5\)

    The required term is \({ }^{10} C_{5}(-1)^{5}=-{ }^{10} C_{5}\)

  • Question 10
    1 / -0

    Determine the value of \(\mathrm{x}\) in the expression of \((2+\mathrm{x})^{5}\), if the second term in the expansion is 240.

    Solution

    Given:

    The second term in the expansion of \((2+\mathrm{x})^{5}\) is 240.

    We know that:

    The general term of \((\mathrm{a}+\mathrm{x})^{\mathrm{n}}\) is \({ }^{\mathrm{n}} \mathrm{C}_ \mathrm{r} \mathrm{a}^{(\mathrm{n}-\mathrm{r})} \mathrm{x}^{\mathrm{r}}\)

    Here, \(\mathrm{n}=5\)

    we will get second term if we put \(\mathrm{r}=1\)

    The second term will be \({ }^{5} \mathrm{C}_{1}\left(2^{(5-1)}\right) \mathrm{x}\) \(=5\left(2^{4}\right) \mathrm{x}\)

    According to the question:

    \(5\left(2^{4}\right) \mathrm{x}=240\)

    Therefore

    \(5(16) \mathrm{x}=240 \)

    \(\Rightarrow 80(\mathrm{x})=240 \)

    \(\Rightarrow \mathrm{x}=3\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now