Self Studies

Complex Numbers and Quadratic Equations Test 48

Result Self Studies

Complex Numbers and Quadratic Equations Test 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If the roots of the equation x2 - nx + m = 0 differ by 1, then:

    Solution

    Let \(\alpha\) and \(\beta\) be roots of the equation \(x^{2}-n x+m=0\).

    Given,

    The roots of the equation \(x^{2}-n x+m=0\) differ by 1.

    \(\Rightarrow \alpha-\beta=1 \)

    \(\Rightarrow \alpha=1+\beta\)

    Now,

    The sum of the roots \(=\alpha+\beta=-(-n)=n\)

    \(\therefore \beta+1+\beta=n \)

    \(\Rightarrow 2 \beta+1=n \)

    \(\Rightarrow \beta=\frac{(n-1)}{2}\)

    The product of the roots \(=\alpha \beta=m\)

    \(\therefore \beta(1+\beta)=m \)

    \(\Rightarrow\left(\frac{n-1}{2}\right)\left(1+\frac{n-1}{2}\right)=m \)

    \(\Rightarrow\left(\frac{n-1}{2}\right)\left(\frac{2+n-1}{2}\right)=m \)

    \(\Rightarrow(n-1)(n+1)=4 m \)

    \(\Rightarrow n^{2}-1=4 m \)

    \(\Rightarrow n^{2}-4 m-1=0\)

  • Question 2
    1 / -0

    The quadratic equation \(7 x^{2}-28 x+21\) have roots \(\alpha\) and \(\beta\). And \(\frac{1}{\alpha}+\frac{1}{\beta}=\frac{k}{\alpha \beta}\) then find the value of \(k\).

    Solution

    Given,

    Quadratic equation \(7 x^{2}-28 x+21\)

    \( 7 x^{2}-28 x+21=0 \)

    \(\Rightarrow x^{2}-4 x+3=0 \)

    \(\Rightarrow x^{2}-x-3 x+3=0 \)

    \(\Rightarrow(x-1)(x-3)=0 \)

    \(\Rightarrow x=1,3\)

    Now,

    \( \frac{1}{\alpha}+\frac{1}{\beta}=\frac{k}{\alpha \beta} \)

    \(\Rightarrow \frac{1}{1}+\frac{1}{3}=\frac{k}{1 \times 3} \)

    \(\Rightarrow \frac{4}{3}=\frac{k}{3}\)

    \(\Rightarrow k=4\)

    So, the value of \(k\) is \(4\).

  • Question 3
    1 / -0

    A quadratic equation ax2 + bx + c = 0 has no real roots, if:

    Solution

    A quadratic equation ax2 + bx + c = 0 has no real roots, if b2 – 4ac < 0. That means, the quadratic equation contains imaginary roots.

  • Question 4
    1 / -0

    Find the real and imaginary part of the complex number \(z =\frac{1- i }{1+ i }\).

    Solution

    Given,

    Complex number \(z=\frac{1-i}{1+i}\)

    Multiplyingby \((1 - i)\) inthe numerator and denominator, we get

    \( z=\frac{1-i}{1+i} \times \frac{1-i}{1-i} \)

    \(\Rightarrow z=\frac{(1-i)(1-i)}{1-i^2} \)

    \(\Rightarrow z=\frac{1+i^{2}-2 i}{1+1} \quad [\because i^2=-1]\)

    \(\Rightarrow z=\frac{1-1-2 i}{2} \)

    \(\Rightarrow z=\frac{0-2 i}{2} \)

    \(\Rightarrow z=0-1i\)

    \(\therefore\) Re(z) \(=0\) and Im(z)\(=-1\)

  • Question 5
    1 / -0

    If α and β are the roots of the equation x2 - q(1 + x) - r = 0, then (1 + α)(1 + β) isequal to:

    Solution

    Given,

    \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-q(1+x)-r=0\)

    \(\Rightarrow x^{2}-q-q x-r=0 \)

    \(\Rightarrow x^{2}-q x-(q+r)=0\)

    Sum of roots \(=\alpha+\beta=q\)

    Product of roots \(=\alpha \beta=-(q+r)=-q-r\)

    Now,

    \((1+\alpha)(1+\beta)=1+\alpha+\beta+\alpha \beta \)

    \(=1+q-q-r \)

    \(=1-r\)

  • Question 6
    1 / -0

    The quadratic equation \(2 x^{2}-\sqrt{5} x+1=0\) has:

    Solution

    As we know,

    If discriminant \( b ^{2}-4 ac <0\), then it has no real roots.

    Given,

    \(2 x^{2}-\sqrt{5 x}+1=0\)

    Comparing with the standard form of a quadratic equation, we get

    \(a=2, b=-\sqrt{5}, c=1\)

    Now,

    \( b ^{2}-4 ac =(-\sqrt{5})^{2}-4\times (2) \times (1) \)

    \(=5-8 \)

    \(=-3\)

    \( b ^{2}-4 ac <0\)

    Therefore, the given equation has no real roots.

  • Question 7
    1 / -0

    The conjugate of \(\frac{(2- i )(1+2 i )}{(3+ i )(2-3 i )}\) is:

    Solution

    Let,

    \(z=\frac{(2-i)(1+2 i)}{(3+i)(2-3 i)}\)

    \(\Rightarrow z=\frac{2+4 i-i-2 i^{2}}{6-9 i+2 i-3 i^{2}}\)

    \(\Rightarrow z=\frac{2+4 i-i+2}{6-9 i+2 i+3} \quad[\because i^2=-1]\)

    \(\Rightarrow z=\frac{4+3 i}{9-7 i} \)

    Multiplying by \((9+7i)\) in numerator and denominator, we get

    \( z=\frac{4+3 i}{9-7 i} \times \frac{9+7 i}{9+7 i} \)

    \(\Rightarrow z=\frac{36+28 i+27 i+21 i^{2}}{81-49 i^{2}}\)

    \(\Rightarrow z=\frac{36+28 i+27 i-21}{81+49} \quad[\because i^2=-1]\)

    \(\Rightarrow z=\frac{15+55 i }{130} \)

    \(\Rightarrow z=\frac{15}{130}+i \frac{55}{130}\)

    As we know,

    Conjugate of \(z =\bar{ z }= x - iy\)

    \(\therefore \bar{ z }=\frac{15}{130}- i \frac{55}{130}\)

  • Question 8
    1 / -0

    If α and β are the roots of the equation ax2 + bx + c = 0, where a ≠ 0, then (aα + b) (aβ + b) is equal to:

    Solution

    Given,

    \(\alpha\) and \(\beta\) are roots of the equation \(a x^{2}+b x+c=0\).

    Sum of roots \(=\alpha+\beta=\frac{-b}{a}\)

    Product of roots \(=\alpha \beta=\frac{c}{a}\)

    Now,

    \((a \alpha+b)(a \beta+b)=a^{2} \alpha \beta+a b \alpha+a b \beta+b^{2}\)

    \(=a^{2} \times\left(\frac{c}{a}\right)+a b(\alpha+\beta)+b^{2}\)

    \(=a c+a b \times\left(\frac{-b}{a}\right)+b^{2}\)

    \(=a c-b^{2}+b^{2}\)

    \(=a c\)

  • Question 9
    1 / -0

    Find the value of \(i ^{1325}\) where \(i =\sqrt{-1}\).

    Solution

    As we know,

    \(i =\sqrt{-1}\)

    \( i ^{2}=-1\)

    \(i^{4 n}=1\)

    Given,

    \( i^{1325}\)

    \(=i^{(1324+1)}\)

    \(=\left(i^{4}\right)^{331} \times i\)

    \(=1 \times i \quad\left[\because i^{4 n}=1\right]\)

    \(=i\)

    \(\therefore i^{1325}=i\)

  • Question 10
    1 / -0

    If \(\alpha\) and \(\beta\) are the roots of the quadratic equation \((5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+(8+2 \sqrt{5})=0\), then the value of \(\frac{2 \alpha \beta }{(\alpha+\beta)}\) is:

    Solution

    For quadratic equation \(a x^{2}+b x+c=0\), 

    Sum of roots \(=\alpha+\beta=\frac{-b }{ a}\) 

    Product of roots \(=\alpha \beta=\frac{c }{ a}\)

    Given, \((5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+(8+2 \sqrt{5})=0\)

    \(\therefore  \alpha \beta=\frac{(8+2 \sqrt{5}) }{(5+\sqrt{2})}\) and \(\alpha+\beta=\frac{(4+\sqrt{5}) }{(5+\sqrt{2})}\)

    Now, \(\frac{2 \alpha \beta }{(a+\beta)}= \frac{\frac{2(8+2 \sqrt{5}) }{(5+\sqrt{2})} }{\frac{(4+\sqrt{5}) }{(5+\sqrt{2})}}\)

    \(=\frac{2(8+2 \sqrt{5}) }{(5+\sqrt{2})} \times \frac{(5+\sqrt{2})}{(4+\sqrt{5})} \)

    \(=\frac{2(8+2 \sqrt{5})}{(4+\sqrt{5})} \) \(=\frac{2×2(4+ \sqrt{5})}{(4+\sqrt{5})} \) \(=4\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now