Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    Find the conjugate of \(\frac{1+ i }{1- i }\).

  • Question 2
    1 / -0

    The argument of the complex number \(\frac{1+ i }{1- i }\), where \(i =\sqrt{-1}\), is:

  • Question 3
    1 / -0

    Find \(\frac{z_{1}}{z_{2}}\), when \(z_{1}=6+2 i\) and \(z _{2}=2- i\).

  • Question 4
    1 / -0

    If tan α and tan β are the roots of the equation x2 - 4x - 3 = 0, then the value of (α + β) is:

  • Question 5
    1 / -0

    If \({x}+{iy}=\frac{3+4 {i}}{2-{i}}\) where \({i}=\sqrt{-1}\), then what is the value of y?

  • Question 6
    1 / -0

    What is the modulus of \(\frac{1+7 i }{(2- i )^{2}}\)?

  • Question 7
    1 / -0

    Consider the following.
    1. \(z \bar{z}=|z|^{2}\)
    2. \(z^{-1}=\frac{z}{|z|^{2}}\), where \(z=\) complex number
    Which of the above statement is/are correct?

  • Question 8
    1 / -0

    Find conjugate of \(\frac{3+2 i }{2- i }\).

  • Question 9
    1 / -0

    What is the value of \((-1+i \sqrt{3})^{48}\)?

  • Question 10
    1 / -0

    If \(\alpha, \beta\) are the roots of the equation \(x^{2}+x+2=0\), then \(\frac{\alpha^{10}+\beta^{10}}{\alpha^{-10}+\beta^{-10}}\) is equal to:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now