Self Studies

Complex Numbers and Quadratic Equations Test 50

Result Self Studies

Complex Numbers and Quadratic Equations Test 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the root of equation x2 + kx + 2 = 0 where, k is the arithmetic mean of root of equation x2 + 6x + 8 = 0. 

    Solution

    Let, \(\alpha\) and \(\beta\) are the roots of \(x^{2}+6 x+8=0\), then

    Sum of root \(= \alpha+\beta=-6\)

    Arithmetic mean of root of equation \(=\frac{\alpha+\beta}{2}\) \(=\frac{-6}{2}\) \(=-3 \)

    According to question, arithmetic mean is \(k\).

    So, \(k=-3\)

    Therefore, equation \(x^{2}+k x+2=0\) becomes

    \(x^{2}-3 x+2=0 \) \(\Rightarrow(x-2)(x-1)=0 \)

    \(\Rightarrow x=2\) and \(x=1\)

    So, required roots of equation are \(1, 2\).

  • Question 2
    1 / -0

    If the roots of the equation \(3 a x^{2}+2 b x+c=0\) are in the ratio \(3: 2\), then which one of the following is correct?

    Solution

    If \(\alpha ,\beta \) are the roots of quadratic equation \(a x^{2}+b x+c=0\), then

    Sum of roots \(=\alpha+\beta=\frac{-b}{a}\)

    Product of roots \(=\alpha \times \beta =\frac{c}{a}\)

    Given,

    \(3 a x^{2}+2 b x+c=0\)

    Comparing with standard quadratic equation \(a x^{2}+b x+c=0\), we get

    \(a=3 a, b=2 b\)

    Roots are in the ratio \(3: 2\).

    Let, roots are \(3 \alpha\) and \(2 \alpha\).

    Sum of roots \(=3 \alpha+2 \alpha=\frac{-2 b }{3 a}\)

    \(\Rightarrow 5 \alpha=\frac{-2 b }{ 3 a}\)

    \(\Rightarrow \alpha=\frac{-2 b }{ 15 a}\)

    \(\Rightarrow \alpha^{2}=\frac{4 b^{2}}{15 \times 15 a^{2}}\)

    Now, product of roots \(=3 \alpha \times 2 \alpha=\frac{c }{ 3 a}\)

    \(\therefore 6 \alpha^{2}=\frac{c }{ 3 a} \)

    \(\Rightarrow 6\left(\frac{4 b^{2}}{15 \times 15 a^{2}}\right)=\frac{c}{3 a} \)

    \(\Rightarrow 6 \times \frac{4 b^{2}\times 3a}{15 \times 5 a }=c \)

    \(\Rightarrow 2 \times 4 b^{2}=25 ac\)

    \(\Rightarrow 8 b ^{2}=25 ac\)

  • Question 3
    1 / -0

    For any positive integer \(n,(-1 \sqrt{-1})^{4 n+5}\) is:

    Solution

    As we know,

    \(i= \sqrt{-1}\)

    \(i^2=-1\)

    \(i^3=-i\)

    \(i^4=1\)

    \(i^{4n}=1\)

    Given,

    \((-1 \sqrt{-1})^{4 n+5}\) (where \(n\) is a positive integer)

    \(=(-1\times i)^{4 n+5}\)

    \(=(-i)^{4 n+5} \)

    \(=(- i )^{4 n } \times(- i )^{5} \)

    \(=(- i )^{4 n } \times (- i )^{4} \times(- i )^{1} \)

    \(=1 \times 1 \times(- i ) \)

    \(=- i\)

  • Question 4
    1 / -0

    Find the nature of roots of x2+ 7x - 10 = 0.

    Solution

    Given,

    \(x^{2}+7 x-10=0\)

    Comparing the given equation with \(a x^{2}+b x+c=0\), we get

    \(a=1, b=7\) and \(c=-10\)

    As we know,

    Discriminant \(=b^{2}-4 a c\)

    \(\therefore\)Discriminant \(=(7)^{2}-4 \times 1 \times (-10)\)

    \(=49+40\)

    \(=89\)

    As we know,

    If discriminant \((b^{2}-4 a c)>0\) then roots are real.

    As we can see, discriminant \(=89 >0\)

    \(\therefore\)The roots of the given equation are real.

  • Question 5
    1 / -0

    Find the value of \(\sqrt{(5+12 i )}\), where \(i =\sqrt{-1}\).

    Solution

    Let,

    \(\sqrt{(5+12 i )}= x + iy\)

    On squaring both sides we get,

    \(5+12 i=(x+i y)^{2}\)

    \(\Rightarrow 5+12 i=x^2+(iy)^2+2(x)(iy)\)

    \(\Rightarrow 5+12 i=x^2+i^2y^2+2xyi\)

    As we know,

    \(i^2=-1\)

    \(\Rightarrow 5+12 i=x^2+(-1)y^2+2xyi\)

    \(\Rightarrow 5+12 i=\left(x^{2}-y^{2}\right)+(2 x y)i\)

    Comparing real and imaginary parts on both sides, we get

    \(x^{2}-y^{2}=5 \) and \(2 x y=12\)

    \(\therefore xy=6\)

    \(\Rightarrow y=\frac{6}{x}\)

    Now, \(x^{2}-y^{2})=5 \)

    Putting value of \(y\) in above equation, we get

    \(x^{2}-\left(\frac{6}{x}\right)^{2}=5\)

    \(\Rightarrow x^{2}-\frac{36}{x^2}=5\)

    \(\Rightarrow \frac{x^4-36}{x^2}=5\)

    \(\Rightarrow x^4-36= 5x^2\)

    \(\Rightarrow x^4-5x^2-36= 0\)

    \(\Rightarrow x^4-9x^2+4x^2-36= 0\)

    \(\Rightarrow x^2(x^2-9)+4(x^2-9)=0\)

    \(\Rightarrow x^2-9=0\) or \(x^2+4=0\)

    \(\Rightarrow x^{2}=9 \) or \(x^2=-4\)

    \(\Rightarrow x=\pm 3\) (we know that \(x^2\) is always greater than zero so, we neglect \(x^2=−4\))

    Now, \(x^2-y^{2}=5\)

    \(\therefore 9- y^{2}=5 \)

    \(\Rightarrow y^2=4\)

    \(\Rightarrow y=\pm 2\)

    So, \(\sqrt{(5+12 i )}=\pm(3+2 i )\)

  • Question 6
    1 / -0

    What is the modulus is \(\frac{\sqrt{2}+ i }{\sqrt{2}- i }\) where \(i =\sqrt{-1}\)?

    Solution

    As we know,

    If \(z=x+iy\)...(1) be any complex number, then its modulus is given by,

    \(|z|=\) \(\sqrt{ x ^{2}+ y ^{2}}\)

    Let,

    \(z=\frac{\sqrt{2}+ i }{\sqrt{2}- i } \)

    Multiplying by \((\sqrt{2}+ i)\) in numerator and denominator, we get

    \( z =\frac{\sqrt{2}+ i }{\sqrt{2}- i } \times \frac{\sqrt{2}+ i }{\sqrt{2}+ i } \)

    \(\Rightarrow z =\frac{2+2 \sqrt{2} i + i ^{2}}{2- i ^{2}}\)

    \(\Rightarrow z =\frac{2+2 \sqrt{2} i -1}{2-(-1)} \quad[\because i ^{2}=-1]\)

    \(\Rightarrow z =\frac{1+2 \sqrt{2} i }{3}\)

    \(\Rightarrow z=\frac{1}{3}+i \frac{2 \sqrt{2}}{3}\)...(2)

    Comparing equation (1) and (2), we get

    \(x =\frac{1}{3}\) and \(y =\frac{2 \sqrt{2}}{3}\)

    As, \(|z|=\) \(\sqrt{ x ^{2}+ y ^{2}}\)

    \(\therefore |z|=\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{2 \sqrt{2}}{3}\right)^{2}}\)

    \(\Rightarrow | z |=\sqrt{\frac{1}{9}+\frac{8}{9}} \)

    \(\Rightarrow| z |=1\)

    So, the modulus of \(\frac{\sqrt{2}+ i }{\sqrt{2}- i }\) is \(1\).

  • Question 7
    1 / -0

    Find the roots of \(a^{2} x^{2}-3 a b x+2 b^{2}=0\).

    Solution

    Given,

    \(a^{2} x^{2}-3 a b x+2 b^{2}=0\)

    \(\Rightarrow a^{2} x^{2}-3 a b x+2 b^{2}=0 \)

    \(\Rightarrow a^{2} x^{2}-2 a b x-a b x+2 b^{2}=0 \)

    \(\Rightarrow a x(a x-2 b)-b(a x-2 b)=0 \)

    \(\Rightarrow(a x-2 b)(a x-b)=0 \)

    \(\Rightarrow(a x-2 b)=0\) or \((a x-b)=0 \)

    \(\Rightarrow x=\frac{2 b }{ a}\) or \( x=\frac{b }{ a}\)

    \(\therefore\) The roots are \(\frac{2 b }{ a}\) and \(\frac{b }{ a}\).

  • Question 8
    1 / -0

    Find the value of \(\theta\) for which \(z =\frac{3-2 i \sin \theta}{2- i \sin \theta}\) is purely real.

    Solution

    Given,

    \(z =\frac{3-2 i \sin \theta}{2- i \sin \theta}\)

    Multiplying the numerator and denominator by \((2+i \sin \theta )\), we get

    \(z =\frac{3-2 i\sin \theta}{2-i\sin \theta} \times \frac{2+i \sin \theta}{2+i \sin \theta} \)

    \(\Rightarrow z=\frac{6+3i \sin \theta-4i \sin \theta-2 i^{2} \sin ^{2} \theta}{(2)^2-(i \sin \theta)^2}\)

    \(\Rightarrow z=\frac{6-i \sin \theta+2 i^{2}\sin ^{2} \theta}{4- i ^{2} \sin ^{2} \theta} \)

    \(\Rightarrow z=\frac{6-i \sin \theta+2 \times (-1) \sin ^{2} \theta}{4-(-1)\sin ^{2} \theta}\quad [\because i^2=-1] \)

    \(\Rightarrow z=\frac{6-i \sin \theta+2 \times (-1) \sin ^{2} \theta}{4-(-1)\sin ^{2} \theta}\)

    \(\Rightarrow z =\frac{6-2 \sin ^{2} \theta}{4+\sin ^{2} \theta}+i\left(\frac{- \sin \theta}{4+\sin ^{2} \theta}\right)\)

    Imaginary part of z,

    \( \operatorname{Im}( z )=\frac{-\sin \theta}{4+\sin ^{2} \theta}\)

    As we know,

    For \(z\) to be purely real, \(\operatorname{Im}(z)=0\)

    \(\therefore \frac{-\sin \theta}{4+\sin ^{2} \theta}=0 \)

    \(\Rightarrow \sin \theta=0\)

    \(\Rightarrow \theta= n \pi\), where \(n\) belongs to an integer

  • Question 9
    1 / -0

    If \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-6 x+3=0\), what is the value of \(\frac{\alpha}{\beta}+\frac{\beta}{\alpha} ?\)

    Solution

    As we know,

    If \(\alpha\) and \(\beta\) are the roots of the equation, \(a x^{2}+b x+c=0\)

    Sum of roots \((\alpha+\beta)=\frac{-b}{a}\)

    Product of roots \((\alpha \beta)=\frac{c}{a}\)

    Given,

    \(x^{2}-6 x+3=0\)

    \(\alpha+\beta=-\left(\frac{-6}{1}\right)=6\)

    \( \alpha \beta=\frac{3}{1}=3 \)

    Now,

    \(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \cdot \beta}\)...(1)

    \((\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta\)

    \(\Rightarrow(6)^{2}=\alpha^{2}+\beta^{2}+2 \times 3 \)

    \(\Rightarrow \alpha^{2}+\beta^{2}=36-6=30\)

    Putting the value of \((\alpha^{2}+\beta^{2})\) in equation (1), we get

    \(\frac{\alpha^{2}+\beta^{2}}{\alpha \cdot \beta}=\frac{30}{3}\)

    \(\therefore \frac{\alpha^{2}+\beta^{2}}{\alpha \cdot \beta}=10\)

    So, the value of \(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \cdot \beta}=10\)

  • Question 10
    1 / -0

    The equation which has the sum of its roots as 3 is:

    Solution

    As we know,

    The sum of the roots of a quadratic equation \(a x^{2}+b x+c\) \(=0, a \neq 0\) is given by,

    \(\frac{ \text{coefficient of} x }{\text{ coefficient of }x^{2}}=-(\frac{b }{ a})\)

    Let us verify the options,

    (A) \(2 x^{2}-3 x+6=0\)

    Sum of the roots \(=\frac{-b }{ a}=-(\frac{-3 }{ 2})=\frac{3 }{ 2}\)

    (B) \(-x^{2}+3 x-3=0\)

    Sum of the roots \(=\frac{-b }{ a}=-(\frac{3 }{-1})=3\)

    (C) \(\sqrt{2} x^{2}-\frac{3 }{ \sqrt{2 x}}+1=0\)

    \(2 x^{2}-3 x+\sqrt{2}=0\)

    Sum of the roots \(=\frac{-b }{ a}=-(\frac{-3 }{ 2})=\frac{3 }{ 2}\)

    (D) \(3 x^{2}-3 x+3=0\)

    Sum of the roots \(=\frac{-b }{ a}=-(\frac{-3 }{ 3})=1\)

    So, the equation which has the sum of its roots as 3 is –x2 + 3x – 3 = 0.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now