Self Studies

Introduction to Three Dimensional Geometry Test - 41

Result Self Studies

Introduction to Three Dimensional Geometry Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The area (in square units) of the quadrilateral formed by the two pairs of lines l2x2−m2y2−n(lx+my) = 0 and l2x2−m2y2+n(lx−my) = 0 is:

    Solution

    Given lines are (on factorising)

    lx+my=0, lx+my+n=0

    lx−my=0, lx+my−n=0

    Area \(=\left|\frac{\left(c_{1}-d_{1}\right)\left(c_{2}-d_{2}\right)}{\left(a_{1} b_{2}-a_{2} b_{1}\right)}\right|=\left|\frac{(0-n)(0+n)}{(-l m-l m)}\right|=\frac{n^{2}}{2|l m|}\)

  • Question 2
    1 / -0

    The maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is:

    Solution

    As we know,

    Distance between two point \(=\sqrt{(x_2 - x_1)^{2}+(y_2- y_1)^{2}+(z_2- z_1 )^{2}}\)

    Given,

    Two points are \((3 \sin \theta, 0,0)\) and \((4 \cos \theta, 0,0)\).

    Distance between them \(=\sqrt{(4 \cos \theta-3 \sin \theta)^{2}+(0-0)^{2}+(0-0)^{2}}\)

    \(=\sqrt{(4 \cos \theta-3 \sin \theta)^{2}}\)

    \(=4 \cos \theta-3 \sin \theta\)...(1)

    Now, maximum value of \(4 \cos \theta-3 \sin \theta=\sqrt{(4)^{2}+(-3)^{2}}\)

    \(=\sqrt{(16+9)}\)

    \(=\sqrt{25}\)

    \(=5\)

    From equation (1), we get

    Distance between them \(=5\)

    So, the maximum distance between points \((3 \sin \theta, 0,0)\) and \((4 \cos \theta, 0,0)\) is \(5\).

  • Question 3
    1 / -0

    The line passing through the points (1, 2, -1) and (3, -1, 2) meets the yz-plane at which one of the following points?

    Solution

    As we know,

    The equation of the line that passes through the two points \(P\left(x_{1}, y_{1}, z_{1}\right)\) and \(Q\left(x_{2}, y_{2}, z_{2}\right)\) is given by the formula,

    \(\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}\)

    The line passing through the points \((1,2,-1)\) and \((3,-1,2)\) is,

    \(\frac{x-1}{3-1}=\frac{y-2}{-1-2}=\frac{z+1}{2+1} \)

    Let, \(\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+1}{3}=\lambda \)

    \(\therefore x=2 \lambda+1, y=-3 \lambda+2 \text { and } z=3 \lambda-1\)

    Line meets the yz-plane,

    So, \(x =0 \)

    \(\Rightarrow 2 \lambda+1=0\)

    \(\Rightarrow 2 \lambda=-1\)

    \(\Rightarrow \lambda=\frac{-1 }{ 2}\)

    Now,

    \(y=-3 \lambda+2\)

    \(\Rightarrow y=-3 \times \frac{-1}{2}+2\)

    \(\Rightarrow y =\frac{3}{2}+2\)

    \(\Rightarrow y=\frac{7 }{ 2}\)

    Now,

    \(z=3 \lambda-1\)

    \(\Rightarrow z=3 \times \frac{-1}{2}-1\)

    \(\Rightarrow z =\frac{-3}{2}-1\)

    \(\Rightarrow z=\frac{-5 }{ 2}\)

    \(\therefore\) Point \((x, y, z)\) is \(\left(0, \frac{7}{2},-\frac{5}{2}\right)\).

  • Question 4
    1 / -0

    The distance of the point \((1,-2,3)\) from the plane \(x-y+z=5\) measured parallel to the line \(\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}\) is:

    Solution

    Equation of the line through \((1,-2,3)\) parallel to the line \(\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}\) is:

    \(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{-6}=r\) (say) ...(1)

    Then any point on (1) is \((2 r +1,3 r -2,-6 r +3)\).

    If this point lies on the plane \(x-y+z=5\), then

    \((2 r+1)-(3 r-2)+(-6 r+3)=5\)

    \(\Rightarrow 2r+1-3r+2-6r+3=5\)

    \(\Rightarrow-7 r +6=5\)

    \(\Rightarrow 6-5=7r\)

    \(\Rightarrow 1=7r\)

    \(\therefore r =\frac{1}{7}\)

    So, the point \(=(2\times \frac{1}{7} +1,3\times \frac{1}{7}-2,-6 \times \frac{1}{7} +3)\)

    \(=(\frac{2}{7} +1,\frac{3}{7}-2,\frac{-6}{7} +3)\)

    \(=(\frac{2+7}{7},\frac{3-14}{7},\frac{-6+21}{7}\)

    \(=\left(\frac{9}{7}, \frac{-11}{7}, \frac{15}{7}\right)\).

    Distance between \((1,-2,3)\) and \(\left(\frac{9}{7}, \frac{-11}{7}, \frac{15}{7}\right)=\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}\)

    \(=\sqrt{\frac{49}{49}}\)

    \(=\sqrt{1}\)

    \(=1\)

  • Question 5
    1 / -0

    If the points (k, 4, 2), (6, 2, - 1) and (8, - 2, - 7) are collinear, then find the value of k.

    Solution
    Given,
    The points \(( k , 4,2),(6,2,-1)\) and \((8,-2,-7)\) are collinear.
    As we know that,
    If the points \(\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)\) and \(\left(x_{3}, y_{3}, z_{3}\right)\) be collinear then \(\left|\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right|=0\)
    Here, \(x_{1}=k, y_{1}=4, z_{1}=2, x_{2}=6, y_{2}=2, z_{2}=-1, x_{3}=8, y_{3}=-2\) and \(z_{3}=-7\)
    \(\therefore \left|\begin{array}{ccc}
    k & 4 & 2 \\
    6 & 2 & -1 \\
    8 & -2 & -7
    \end{array}\right|=0\)
    \(\Rightarrow k \times(-14-2)-4 \times(-42+8)+2 \times(-12-16)=0\)
    \(\Rightarrow-16 k +136-56=0\)
    \(\Rightarrow 16 k =80 \)
    \(\Rightarrow k =5\)
  • Question 6
    1 / -0

    The point \(P\) is on the \(y\)-axis. If \(P\) is equidistant from \((1,2,3)\) and \((2,3,4)\), then \(P _{y}=\)

    Solution

    Given,

    The point \(P\) is on the \(y\)-axis.

    Let the point P be \((0, y , 0)\), \(A\) be \((1,2,3)\) and \(B\) be \((2,3,4)\).

    As we know,

    Distance between two point \(=\sqrt{(x_2 - x_1)^{2}+(y_2- y_1)^{2}+(z_2- z_1 )^{2}}\)

    The distance between \(A(1,2,3)\) and \(P (0 ,y ,0)\) is given by,

    \(AP=\sqrt{(0-1)^{2}+(y-2)^{2}+(0-3)^{2}}\)

    \(=\sqrt{(-1 )^{2}+ (y-2)^{2}+ (-3)^{2}}\)

    \(=\sqrt{1+ (y-2)^{2}+ 9}\)

    The distance between \(B(2,3,4)\) and \(P (0 ,y ,0)\) is given by,

    \(BP=\sqrt{(0-2)^{2}+(y-3)^{2}+(0-4)^{2}}\)

    \(=\sqrt{(-2 )^{2}+ (y-3)^{2}+ (-4)^{2}}\)

    \(=\sqrt{4+ (y-3)^{2}+16}\)

    Since, \(P\) is equidistant from the \((1,2,3)\) and \((2,3,4)\).

    \(\therefore AP=BP\)

    \(\Rightarrow \sqrt{\left(1+( y -2)^{2}+9\right)}=\sqrt{\left(4+( y -3)^{2}+16\right)}\)

    \(\Rightarrow \left(1+( y -2)^{2}+9\right)=\left(4+( y -3)^{2}+16\right)\)

    \(\Rightarrow\left(10+ y ^{2}-4 y +4\right)=\left(20+ y ^{2}-6 y +9\right) \)

    \(\Rightarrow y ^{2}-4 y +14= y ^{2}-6 y +29 \)

    \(\Rightarrow -4y+6y=29-14\)

    \(\Rightarrow 2 y =15 \)

    \(\Rightarrow y =\frac{15}{2}\)

    \(\therefore P_y=\frac{15}{2}\)

  • Question 7
    1 / -0

    If (h, k) are the perpendicular distances from (1, 2, 3) to the x-axis, z-axis respectively, then hk is:

    Solution

    As we know,

    Let two points be \(A\left(x_{1}, y_{1}, z_{1}\right)\) and \(B\left(x_{2}, y_{2}, z_{2}\right)\).

    Distance between \(A\) and \(B =\sqrt{\left( x _{2}- x _{1}\right)^{2}+\left( y _{2}- y _{1}\right)^{2}+\left( z _{2}- z _{1}\right)^{2}}\)

    Midpoint \(=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)\)

    The perpendicular distance of the point \((1,2,3)\) from \(x\) axis is \(h\).

    \( h =\) distance between \((1,2,3)\) and \((1,0,0)\)

    \(\therefore h =\sqrt{(1-1)^{2}+(0-2)^{2}+(0-3)^{2}}\)

    \(\Rightarrow h =\sqrt{(0)^{2}+(-2)^{2}+(-3)^{2}}\)

    \(\Rightarrow h =\sqrt{0+4+9} \)

    \(\Rightarrow h =\sqrt{13}\)

    The perpendicular distance of the point \((1,2,3)\) from \(z\) axis is \(k\).

    \( k =\) distance between \((1,2,3)\) and \((0,0,3)\)

    \(\therefore k =\sqrt{(0-1)^{2}+(0-2)^{2}+(3-3)^{2}}\)

    \(\Rightarrow k =\sqrt{(-1)^{2}+(-2)^{2}+(0)^{2}}\)

    \(\Rightarrow k =\sqrt{1+4+0} \)

    \(\Rightarrow k =\sqrt{5}\)

    Now,

    \(h k =\sqrt{13} \times \sqrt{5}=\sqrt{65}\)

  • Question 8
    1 / -0

    Three planes x + y = 0, y + z = 0, and x + z = 0:

    Solution

    Given,

    Three planes are

    x + y = 0...(i)

    y + z = 0...(ii)

    x + z = 0...(iii)

    Adding these three planes, we get

    2(x + y + z) = 0

    ⇒ x + y + z = 0...(iv)

    Putting value of (x + y) in (iv), we get

    0 + z = 0

    ⇒ z = 0

    Putting value of (y + z) in (iv), we get

    x + 0 = 0

    ⇒ x = 0

    Putting value of (x + z) in (iv), we get

    y + 0 = 0

    ⇒ y = 0

    So, (x, y, z) = (0, 0, 0)

    So, the three planes meet in a unique point.

  • Question 9
    1 / -0

    Find the locus of a point the sum of whose distance from (1,0,0) and (−1,0,0) is equal to 10.

    Solution

    As we know,

    Distance between two point \(=\sqrt{(x_2 - x_1)^{2}+(y_2- y_1)^{2}+(z_2- z_1 )^{2}}\)

    Let the points be \(A (1,0,0), B (-1,0,0)\) and \(P ( x , y , z )\).

    Given,

    \(PA + PB =10\)

    \(\Rightarrow \sqrt{( x -1)^{2}+( y -0)^{2}+( z -0)^{2}}+\sqrt{( x +1)^{2}+( y -0)^{2}+( z -0)^{2}}=10 \)

    \(\Rightarrow \sqrt{( x -1)^{2}+ y ^{2}+ z ^{2}}=10-\sqrt{( x +1)^{2}+ y ^{2}+ z ^{2}}\)

    Squaring both sides, we get

    \(( x -1)^{2}+ y ^{2}+ z ^{2}=100+( x +1)^{2}+ y ^{2}+ z ^{2}-20 \sqrt{( x +1)^{2}+ y ^{2}+ z ^{2}} \)

    \(\Rightarrow-4 x -100=-20 \sqrt{( x +1)^{2}+ y ^{2}+ z ^{2}} \)

    \(\Rightarrow x +25=5 \sqrt{( x +1)^{2}+ y ^{2}+ z ^{2}}\)

    Again squaring both sides, we get

    \(x^{2}+50 x+625=25\left(\left(x^{2}+2 x+1\right)+y^{2}+z^{2}\right) \)

    \(\Rightarrow x^{2}+50 x+625=25x^{2}+50 x+25+25y^{2}+25z^{2} \)

    \(\Rightarrow x^{2}-25x^{2}+50 x-50 x-25+625=25y^{2}+25z^{2} \)

    \(\Rightarrow -24x^{2}+600=25y^{2}+25z^{2} \)

    \(\therefore 24 x^{2}+25 y^{2}+25 z^{2}-600=0\) is the required locus.

  • Question 10
    1 / -0

    The points on the y- axis which are at a distance of 3 units from the point (2, 3, -1) is:

    Solution

    As we know,

    Distance between two point \(=\sqrt{(x_2 - x_1)^{2}+(y_2- y_1)^{2}+(z_2- z_1 )^{2}}\)

    Let the point on \(y\)-axis is \(O (0, y , 0)\) and another point be \(A(2,3,-1)\).

    Distance between \(OA=\sqrt{(2 -0)^{2}+(3-y)^{2}+(-1-0 )^{2}}\)

    Given,

    \(OA=3\)

    Squaring both sides, we get

    \(OA ^{2}=9\)

    \(\Rightarrow \left(\sqrt{(2 -0)^{2}+(3-y)^{2}+(-1-0 )^{2}}\right)^2=9\)

    \(\Rightarrow(2-0)^{2}+(3- y )^{2}+(-1-0)^{2}=9\)

    \(\Rightarrow 4+(3- y )^{2}+1=9\)

    \(\Rightarrow 5+(3- y )^{2}=9\)

    \(\Rightarrow(3- y )^{2}=9-5\)

    \(\Rightarrow y^{2}-6y+9=4\)

    \(\Rightarrow y^{2}-6y+5=0\)

    \(\Rightarrow (y-1)(y-5)=0\)

    \(\Rightarrow y =1,5\)

    So, the point is either \((0,1,0)\) or \((0,5,0)\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now