Self Studies

Limits and Derivatives Test - 59

Result Self Studies

Limits and Derivatives Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\tan ^{2} 3 x}{x^{2}}\) is:

    Solution

    Given that:

    \(\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan ^{2} 3 x}{x^{2}}\)

    Dividing by \(9\) in both numerator and denominator, we get:

    \(=\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan ^{2} 3 x}{x^{2}} \times \frac{9}{9}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{9 \tan ^{2} 3 x}{(3 x)^{2}}\)

    \(=9 \times \underset{{{x \rightarrow 0}}}{\lim} \frac{\tan 3 x}{3 x} \times \underset{{{x \rightarrow 0}}}{\lim} \frac{\tan 3 x}{3 x}\)

    We know that:

    \(\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\tan {x}}{{x}}=1\)

    Therefore,

    \(=9 \times 1 \times 1\)

    \(=9\)

    Therefore, the value of \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\tan ^{2} 3 x}{x^{2}}\) is\(9\).

  • Question 2
    1 / -0

    If \(y=x^{4}\left(x^{3}+2 x^{2}+5\right)\), then find \(y'\).

    Solution

    Given:

    \(y=x^{4}\left(x^{3}+2 x^{2}+5\right)\)

    \(y=x^{4}\left(x^{3}+2 x^{2}+5\right)\)

    \(y=x^{7}+2 x^{6}+5 x^{4}\)

    As we know that,

    If \({f}({x})={x}^{{n}}\), then

    \(\frac{d\left(x^{n}\right)}{d x}=n \cdot x^{n-1}\)

    Therefore,

    \(y'=7 x^{6}+12 x^{5}+20 x^{3}\)

    \(y'=x^{3}\left(7 x^{3}+12 x^{2}+20\right)\)

  • Question 3
    1 / -0

    If \(y=\frac{4+3 x^{3}}{6 x^{4}}\), then find the value of \(\frac{d y}{d x}\).

    Solution

    Given that:

    \(y=\frac{4+3 x^{3}}{6 x^{4}}\)

    \(=\frac{4}{6 x^{4}}+\frac{3 x^{3}}{6 x^{4}}\)

    \(=\frac{2}{3 x^{4}}+\frac{1}{2 x}\)

    \(y=\frac{2}{3} x^{-4}+\frac{1}{2} x^{-1}\)

    As we know that:

    If \(y=a x^{-n}\)

    Then,

    \( \frac{d y}{d x}=a\left(-n x^{-n-1}\right)\)

    Therefore,

    \(\frac{d y}{d x}=\frac{2}{3}\left(-4 x^{-5}\right)+\frac{1}{2}\left(-1 x^{-2}\right)\)

    \(=-\frac{8}{3} x^{-5}-\frac{1}{2} x^{-2}\)

    \(=-\frac{8}{3 x^{5}}-\frac{1}{2 x^{2}}\)

    \(=-\frac{1}{6 x^{2}}\left(\frac{16}{x^{3}}+3\right)\)

  • Question 4
    1 / -0

    Find the value of \(\lim _{{x} \rightarrow 5} \frac{{x}^{2}-25}{{x}^{2}-2 {x}-10}\)

    Solution

    Given,

    \(\lim _{{x} \rightarrow 5} \frac{{x}^{2}-25}{{x}^{2}-2 {x}-10}\)

    Putting the value \(x \rightarrow 5\) in above equation, we get:

    \(=\frac{5^{2}-25}{5^{2}-2 \times 5-10}\)

    \(=\frac{0}{5}\)

    \(=0\)

  • Question 5
    1 / -0

    If \(f(x)=x^{3}+3 x^{2}+3 x-7\), then find the value of \(\frac{d f(x)}{d x}\) at \(x=2\).

    Solution

    Given:

    \(f(x)=x^{3}+3 x^{2}+3 x-7\)

    We know that:

    \(\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\)

    Derivative of a constant, i.e.,

    \(\frac{\mathrm{d}(\text { constant })}{\mathrm{dx}}=0\)

    Therefore, 

    \(\frac{d f(x)}{d x}=3 x^{2}+6 x+3\)

    Putting \(x=2\) in above, we get:

    \(\frac{\mathrm{d} \mathrm{f}(\mathrm{x})}{\mathrm{dx}}=3(2)^{2}+6(2)+3\)

    \(=3(4)+12+3\)

    \(=12+12+3\)

    \(\frac{\mathrm{d} \mathrm{f}(\mathrm{x})}{\mathrm{dx}}=27\)

    The value of \(\frac{\mathrm{d} \mathrm{f}(x)}{\mathrm{dx}}\) at \(\mathrm{x}=2\) is 27.

  • Question 6
    1 / -0
    Differentiate \(3^{x \log x}, x>0\) with respect to \(x\).
    Solution

    We know that:

    \(\frac{d(\log x)}{d x}=\frac{1}{x}\)

    Here, we have to find the derivative of \(3^{x \log x}, x>0\) with respect to \(x\).

    Let, \(y=3^{x \log x}\)

    \(y=3^{\log x^{x}}\)

    By taking log on both sides, we get,

    \(\log y=\log 3^{\log x^{x}}\)

    \(=\log x^{x} \log 3\)

    \(\log y=x \log x \log 3\)

    By differentiating both the sides the above with respect to \(x\), we get:

    \(\frac{1}{y} \frac{d y}{d x}=\log 3\left[x \frac{d}{d x}(\log x)+\log x \frac{d}{d x}(x)\right]\)

    \(\frac{1}{y} \frac{d y}{d x}=\log 3\left[x \cdot \frac{1}{x}+\log x .1\right]\)

    \(\frac{1}{y} \frac{d y}{d x}=\log 3(1+\log x)\)

    \(\frac{d y}{d x}=y[\log 3(1+\log x)]\)

    \(\frac{d y}{d x}=3^{x \log x}[\log 3(1+\log x)]\quad \) \((\because y=3^{x \log x})\)

  • Question 7
    1 / -0

    What is the value of \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{(1-\cos 2 {x})^{3}}{{x}^{6}}\)?

    Solution

    Given:

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{(1-\cos 2 {x})^{3}}{{x}^{6}}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(2 \sin ^{2} x\right)^{3}}{x^{6}} \quad\left(\because 1-\cos 2 \theta=2 \sin ^{2} \theta\right)\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{8 \sin ^{6} x}{x^{6}}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} 8 \times\left(\frac{\sin x}{x}\right)^{6}\)

    \(=8 \times 1\quad\) \(\left(\because\underset{{{x \rightarrow 0} }}{\lim}\frac{\sin x}{x}=1\right)\)

    \(=8\)

  • Question 8
    1 / -0

    The value of \(\lim _{x \rightarrow 0} \frac{\cos 4 x-1}{1-\cos x}\) is:

    Solution

    We know that:

    L-Hospital Rule as:

    \(\underset{{{x \rightarrow c}}}{\lim} \frac{f(x)}{g(x)}=\underset{{{x \rightarrow c}}}{\lim} \frac{f^{\prime}(x)}{g(x)}\)

    Given that:

    \(\lim _{x \rightarrow 0} \frac{\cos 4 x-1}{1-\cos x}\)

    Let,

    \(L=\underset{{{x \rightarrow 0}}}{\lim}\frac{\cos 4 x-1}{1-\cos x}\)....(1)

    On putting the limits in above, we get:

    \(L=\frac{0}{0}\)

    Applying L-Hospital Rule on equation (1), we get:

    \(L=\underset{{{x \rightarrow 0}}}{\lim}\frac{\cos 4 x-1}{1-\cos x} =\underset{{{x \rightarrow 0}}}{\lim}\frac{\frac{d}{dx}(\cos 4 x-1)}{\frac{d}{dx}(1-\cos x)}\)

    \({L}=\underset{{{{x} \rightarrow 0}}}{\lim} \frac{-4 \sin 4 {x}}{\sin {x}}\)...(2)

    \(L=\frac{0}{0}\)

    Again applying L-Hospital Rule on equation (2), we get:

    \({L}=\underset{{{{x} \rightarrow 0}}}{\lim}\frac{-16 \cos 4 {x}}{\cos {x}}\)

    \(L=\frac{-16}{1}\)

    \(L=-16\)

  • Question 9
    1 / -0

    Find the value of \(\lim _{{x} \rightarrow \infty} \frac{{x}^{4}+3 {x}^{2}+5}{{x}^{4}+{x}^{2}-6}\)

    Solution

    Given that:

    \(\lim _{{x} \rightarrow \infty} \frac{{x}^{4}+3 {x}^{2}+5}{{x}^{4}+{x}^{2}-6}\)

    On putting the limits in above equation, we get:

    \(\lim _{{x} \rightarrow \infty} \frac{x^{4}+3 {x}^{2}+5}{{x}^{4}+{x}^{2}-6}=\frac{\infty}{\infty}\)

    We know that:

    L-Hospital Rule :

    \(\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}\)

    Applying L-Hospital Rule

    \({L}(\) say \() =\lim _{{x} \rightarrow \infty} \frac{\frac{d}{dx}({x}^{4}+3 {x}^{2}+5)}{\frac{d}{dx}({x}^{4}+{x}^{2}-6)}\quad\) \((\because \frac{d}{dx}(x^n)= nx^{n-1}\) and differentiation of constant term is \(0.)\)

    \(=\lim _{{x} \rightarrow \infty} \frac{4 {x}^{3}+6 {x}}{4 {x}^{3}+2 {x}}\)

    \(=\lim _{{x} \rightarrow \infty} \frac{4 {x}^{2}+6}{4 {x}^{2}+2}\) ....(1)

    \(=\frac{\infty}{\infty}\)

    Again applying L-Hospital Rule on equation (1), we get:

    \(L=\lim _{{x} \rightarrow \infty} \frac{\frac{d}{dx}(4 {x}^{2}+6)}{\frac{d}{dx}(4 {x}^{2}+2)}\)

    \(L=\lim _{x \rightarrow \infty} \frac{8 x}{8 x}\)

    \(L=\lim _{{x} \rightarrow \infty} 1\)

    \(L=1\)

  • Question 10
    1 / -0
    What is the value of \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{x \sin x}\)?
    Solution

    Given that:

    \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{x \sin x}\)

    Let,

    \(L=\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{x \sin x}\)

    \(L=\underset{{{x \rightarrow 0}}}{\lim}\frac{\left(e^{4 x^{2}}-1\right)}{x \sin x} \times \frac{4 x}{4 x}\)

    \(L=\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\left({e}^{4 x^{2}}-1\right)}{4 {x}^{2}} \times\left(\frac{{x}}{\sin {x}}\right) \times 4\)

    We know that:

    \(\underset{{{x \rightarrow 0}}}{\lim}\frac{e^{x}-1}{x}=1\)

    \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\sin x}{x}=1\)

    \(\therefore \underset{{{{x} \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{4 x^{2}}=1\)

    and, \( \underset{{{{x} \rightarrow 0}}}{\lim} \left(\frac{{x}}{\sin {x}}\right)=1\)

    and,

    Now,

    \(L=1 \times 1 \times 4=4\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now