Self Studies

Limits and Derivatives Test - 61

Result Self Studies

Limits and Derivatives Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What is the value of \(\frac{d}{d x}\left(2 x^{4}+x^{3}+3 x^{2}\right)\) at \(x=-1\)?

    Solution

    Here, we have to find the value of:

    \(\frac{d}{d x}\left(2 x^{4}+x^{3}+3 x^{2}\right)\) at \(\mathrm{x}=1\)

    Let,

    \(y=\left(2 x^{4}+x^{3}+3x^{2}\right)\)

    We know that:

    \(\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\)

    Derivative of a constant, \(\frac{{d}(\text { constant })}{{dx}}=0\)

    \(\Rightarrow \frac{dy}{d x} =2\left(4 x^{3}\right)+3\left(x^{2}\right)+3(2 x)\)

    \(=8 x^{3}+3 x^{2}+6 x\)

    By substituting \(x = - 1\) in the above equation we get,

    \( \frac{dy}{d x} =8(-1)^{3}+3(-1)^{2}+6(-1)\)

    \( \frac{dy}{d x} =-11\)

  • Question 2
    1 / -0

    If \(x=\frac{\sqrt{2}}{\theta^{\sqrt{2}}}+\frac{1}{\theta}-\theta\), then find the value of \(\frac{d x}{d \theta}\).

    Solution

    Given that:

    \(x=\frac{\sqrt{2}}{\theta^{\sqrt{2}}}+\frac{1}{\theta}-\theta\)

    As we know that:

    If \({s}={at}^{n}\)

    Then,

    \(\frac{d s}{d t}=a \times n t^{n-1}\)

    To differentiate \(s=\frac{a}{t^{n}}\) where \(a\) is a constant, it can be rewritten as \({s}={at}^{-n}\), i.e.,

    \(x=\frac{\sqrt{2}}{\theta^{2}}+\frac{1}{\theta}-\sqrt{\theta}\)

    \(x=\sqrt{2} \theta^{-2}+\theta^{-1}-\theta^{-\frac{1}{2}}\)

    Therefore,

    \(\frac{d x}{d \theta}=\sqrt{2}\left(-2 \theta^{-3}\right)+\left(-1 \theta^{-2}\right)-\left(-\frac{1}{2} \theta^{-\frac{3}{2}}\right)\)

    \(\frac{d x}{d \theta}=-2 \sqrt{2} \theta^{-3}-\theta^{-2}+\frac{1}{2} \theta^{-\frac{3}{2}}\)

  • Question 3
    1 / -0

    What is the value of \(\lim _{{x} \rightarrow \infty} \frac{{x}^{3}+3 {x}^{2}+6 {x}+5}{{x}^{3}+2 {x}+6}\)?

    Solution

    Let,

    \({L}=\lim _{{x} \rightarrow \infty} \frac{{x}^{3}+3 {x}^{2}+6 {x}+5}{{x}^{3}+2 {x}+6}\) ....(1)

    Putting \(x=\infty\) in equation (1), we get:

    \(L=\frac{\pm \infty}{\pm \infty}\)

    Since, we know that:

    \(\frac{d}{dx}(x^n)= nx^{n-1}\) and differentiation of constant term is \(0.\)

    Differentiating numerator and denominator with respect to \(x\) in equation (1), we get:

    \({L}=\lim _{{x} \rightarrow \infty} \frac{3 {x}^{2}+6 {x}+6}{3 {x}^{2}+2}\) ....(2)

    Again putting \(x=\infty\) in equation (2), we get: 

    \(L=\frac{\pm \infty}{\pm \infty}\)

    Differentiating numerator and denominator with respect to \(x\) in equation (2), we get:

    \({L}=\lim _{{x} \rightarrow \infty} \frac{6 {x}+6}{6 {x}}\) ....(3)

    Again putting \(x=\infty\) in equation (3), we get 

    \(L=\frac{\pm \infty}{\pm \infty}\)

    Again differentiating numerator and denominator with respect to \(x\) in equation (3), we get:

    \({L}=\lim _{{x} \rightarrow \infty} \frac{6}{6}\)

    \(=\lim _{{x} \rightarrow \infty} 1\) ....(4)

    Applying limit \({x} \rightarrow \infty\) in equation (4), we get:

    \( {L}=1\)

  • Question 4
    1 / -0

    If \(f(x)=\sqrt[4]{-3 x^{4}-2}\), then \(f^{\prime}(x)=?\)

    Solution

    Given:

    \(f(x)=\sqrt[4]{-3 x^{4}-2}\)

    \(=\left(-3 x^{4}-2\right)^{\frac{1}{4}}\)

    We know that:

    \(\frac{d}{dx}(x^n)=nx^{n-1}\)

    Therefore,

    \(f^{\prime}(x)=\frac{1}{4}\left(-3 x^{4}-2\right)^{\frac{1}{4}-1} \frac{d}{d x}\left(-3 x^{4}-2\right)\)

    \( =\frac{1}{4}\left(-3 x^{4}-2\right)^{-\frac{3}{4}}\left(-3\left(4 x^{3}\right)\right)\)

    \( =-3 x^{3}\left(-3 x^{4}-2\right)^{-\frac{3}{4}}\)

    \(f^{\prime}(x)=-\frac{3 x^{3}}{\left(-3 x^{4}-2\right)^{\frac{3}{4}}}\)

  • Question 5
    1 / -0

    Find the value of \(k\) if \(\lim _{x \rightarrow 2}\left(3 x^{2}+5 x-1\right)=k\)

    Solution

    As we know that, if \(\lim _{x \rightarrow a} f(x)\) does not result into indeterminate form, then we use direct substitution in order to find the limits.

    Here, also we can see that, \(\lim _{x \rightarrow 2}\left(3 x^{2}+5 x-1\right)\) does not result into any indeterminate form.

    So, we can substitute \(x=2\) in the expression \(3 x^{2}+5 x-1\) in order to find the value of \(k\).

    \(\Rightarrow \lim _{x \rightarrow 2}\left(3 x^{2}+5 x-1\right)=k\)

    \(\Rightarrow 3 \times 2^{2}+5 \times 2-1=k\)

    \(\Rightarrow 21=k\)

    or, \( k=21\)

  • Question 6
    1 / -0

    Find the value of \(k\) if \(\underset{{{x \rightarrow 0}}}{\lim}\frac{-3 x^{2}-7 x+8}{7 x^{2}+2 x+2}=k\)

    Solution

    Given:

    \(\underset{{{x \rightarrow 0}}}{\lim}\frac{-3 x^{2}-7 x+8}{7 x^{2}+2 x+2}=k\)

    As we know that, if \(\underset{{{x \rightarrow 0}}}{\lim} f(x)\) does not result into indeterminate form, then we use direct substitution in order to find the limits.

    Here, also we can see that \(\underset{{{x \rightarrow 0}}}{\lim}\frac{-3 x^{2}-7 x+8}{7 x^{2}+2 x+2}\) does not result into any indeterminate form.

    So, we can substitute \(x=0\) in the expression \(\frac{-3 x^{2}-7 x+8}{7 x^{2}+2 x+2}\) in order to find the value of \(k\).

    \(\Rightarrow\underset{{{x \rightarrow 0}}}{\lim}\frac{-3 x^{2}-7 x+8}{7 x^{2}+2 x+2}=k\)

    \(\Rightarrow \frac{-3 (0)^{2}-7 (0)+8}{7 (0)^{2}+2 (0)+2}=k\)

    \(\Rightarrow \frac{8}{2}=k\)

    \(\Rightarrow 4=k\)

    or, \(k=4\)

     
  • Question 7
    1 / -0

    If \(s=0.4 t^{10}+\frac{9}{t^{3}}-6 t\), then find the value of \(\frac{d s}{d t}\).

    Solution

    Given that:

    \(s=0.4 t^{10}+9 t^{-3}-6 t\)

    As we know that:

    If \({s}={at}^{n}\)

    Then,

    \(\frac{d s}{d t}=a \times n t^{n-1}\)

    Therefore,

    \(\frac{d s}{d t}=0.4\left(10 t^{9}\right)+9\left(-3 t^{-4}\right)-6\)

    \(=4 t^{9}-27 t^{-4}-6\)

     
  • Question 8
    1 / -0

    Find the value of \(\underset{{x \rightarrow 1}}{\lim} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}\)

    Solution

    Given that:

    \(\underset{{x \rightarrow 1}}{\lim} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}\)

    On putting the limit in above equation we will get\(\frac{0}{0} \) form.

    Therefore, we can cancel a factor going to zero out of the numerator and denominator.

    We have,

    \(\underset{{ {{x} \rightarrow 1} }}{\lim}\frac{(2 {x}-3)(\sqrt{{x}}-1)}{2 {x}^{2}+{x}-3}\)

    \(=\underset{{{{x} \rightarrow 1}}}{\lim} \frac{(2 {x}-3)(\sqrt{{x}}-1)}{(2 {x}+3)({x}-1)}\)

    \(=\underset{{{{x} \rightarrow 1}}}{\lim} \frac{(2 {x}-3)(\sqrt{{x}}-1)}{(2 {x}+3)(\sqrt{{x}}-1)(\sqrt{{x}}+1)}\)

    Factor \((\sqrt{x}-1)\) becomes zero at \(x\) tends to 1 so, we need to cancel this factor from numerator and denominator.

    \(=\underset{{{x \rightarrow 1}}}{\lim} \frac{(2 x-3)}{(2 x+3)(\sqrt{x}+1)}\)

    \(=\frac{2-3}{(2+3)(\sqrt{1}+1)}\)

    \(=\frac{-1}{10}\)

  • Question 9
    1 / -0

    Evaluate \(\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan 2 x}{{e}^{2 x}-1}\)

    Solution

    We know that:

    \(\underset{{{x \rightarrow a}}}{\lim}\left[\frac{f(x)}{g(x)}\right]=\frac{\underset{{{x \rightarrow a}}}{\lim}f(x)}{\underset{{{x \rightarrow a}}}{\lim}g(x)}\), provided \(\underset{{{x \rightarrow a}}}{\lim} g(x) \neq 0\) 

    Given that:

    \(\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan 2 x}{e^{2 x}-1}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{\frac{\tan 2 x}{2 x} \times 2 x}{\frac{e^{2 x}-1}{2 x} \times 2 x}\)

    \(=\frac{\underset{{{x \rightarrow 0}}}{\lim} \frac{\tan 2 x}{2 x}}{\underset{{{x \rightarrow 0}}}{\lim} \frac{e^{2 x}-1}{2 x}}\)

    As we know that:

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{\tan {x}}{{x}}=1\) 

    and, \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{{e}^{x}-1}{{x}}=1\)

    Therefore, 

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{\tan 2 {x}}{2 {x}}=1\) 

    and, \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{{e}^{2 x}-1}{2 {x}}=1\)

    Therefore, 

    \(\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\tan 2 {x}}{{e}^{2 x}-1}=\frac{1}{1}=1\)

  • Question 10
    1 / -0

    If \(f(x)=\frac{\sqrt[4]{x}}{x^{-1} \sqrt{x^{5}}}\), then find the value of \(f^{\prime}(x)\).

    Solution

    Given that:

    \(f(x)=\frac{\sqrt[4]{x}}{x^{-1} \sqrt{x^{5}}}\)

    \(=\frac{x^{\frac{1}{4}}}{x^{-1} x^{\frac{5}{2}}}\)

    \(=\frac{x^{\frac{1}{4}}}{x^{\frac{3}{2}}}\)

    \(=x^{\frac{1}{4}-\frac{3}{2}}\)

    \(=x^{-\frac{5}{4}}\)

    As we know that:

    If \(y=a x^{-n}\), then:

    \(\frac{d y}{d x}=a\left(-n x^{-n-1}\right)\)

    Therefore,

    \(f^{\prime}(x)=-\frac{5}{4} x^{-\frac{5}{4}-1}\)

    \(=-\frac{5}{4} x^{-\frac{9}{4}}\)

    \(=-\frac{5}{4} \frac{1}{x^{\frac{9}{4}}}\)

    \(=-\frac{5}{4} \frac{1}{\sqrt[4]{x^{9}}}\)

    \(=-\frac{5}{4} \frac{1}{\sqrt[4]{x^{8+1}}}\)

    \(=-\frac{5}{4} \frac{1}{x^{2} \sqrt[4]{x}}\)

    \(=-\frac{5}{4 x^{2 }\sqrt[4]{x}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now