Self Studies

Linear Inequalities Test -9

Result Self Studies

Linear Inequalities Test -9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Solve: |x – 1| ≤ 5, |x| ≥ 2

    Solution

    Given,

    |x – 1| ≤ 5, |x| ≥ 2

    ⇒ -(5 ≤ (x – 1) ≤ 5), (x ≤ -2 or x ≥ 2)

    ⇒ -(4 ≤ x ≤ 6), (x ≤ -2 or x ≥ 2)

    Now, required solution is

    x ∈ [-4, -2] ∪ [2, 6]

  • Question 2
    1 / -0

    If \(2 x+5>2+3 x\) and \(2 x-3 \leq 4 x-5\), then \(x\) can take which of the following values?

    Solution

    \(2 x+5>2+3 x\)

    \(5-2>3 x-2 x\)

    \(3>x\) ..........(1)

    \(2 x-3 \leq 4 x-5\)

    \(5-3 \leq 4 x-2 x\)

    \(1 \leq x\) .........(2)

    From (1) and (2)

    x=1 or 2

  • Question 3
    1 / -0

    If \(\left(\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}}\right)^{3}+\left(\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\right)^{3}=\frac{229 a}{27}\), what is the value of a?

    Solution

    Let \({x}=\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}} ; {y}=\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\)

    We know that, \(x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)\)

    \(\Rightarrow({x}+{y})=\frac{\left[(\sqrt{22}+\sqrt{10})^{2}+(\sqrt{22}-\sqrt{10})^{2}\right]}{22-10}\)

    \(\Rightarrow(x+y)=\frac{(22+10+22+10)}{12}\)

    \(\Rightarrow(x+y)=\frac{64}{12}\)

    \(\Rightarrow(x+y)=\frac{16}3\) and \(x y=1\)

    \(\Rightarrow x^{2}+y^{2}+2 x y=(\frac{16}{3})^{2}\)

    \(\Rightarrow x^{2}+y^{2}+2(1)=\frac{256}9\)

    \(\Rightarrow x^{2}+y^{2}=\frac{256}9-2\)

    \(\Rightarrow x^{2}+y^{2}=\frac{238}9\)

    \(x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)\)

    \(\Rightarrow x^{3}+y^{3}=\left(\frac{16}{3}\right) \times\left(\frac{238}{9}-1\right)\)

    \(\Rightarrow x^{3}+y^{3}=\left(\frac{16}{3}\right) \times\left(\frac{229}{9}\right)\)

    \(\Rightarrow\left(\frac{\sqrt{22}+\sqrt{10}}{\sqrt{22}-\sqrt{10}}\right)^{3}+\left(\frac{\sqrt{22}-\sqrt{10}}{\sqrt{22}+\sqrt{10}}\right)^{3}=\left(\frac{229}{27}\right) \times 16\)

    \(\Rightarrow\left(\frac{229}{27}\right) \times 16=\frac{229 a}{27}\)

    \(\therefore a=16\)

  • Question 4
    1 / -0

    If \(-2<2 x-1<2\) then the value of \(x\) lies in the interval:

    Solution

    Given \(-2<2 x-1<2\)

    \(\Rightarrow-2+1<2 x<2+1\)

    \(\Rightarrow-1<2 x<3\)

    \(\Rightarrow\frac{-1}2

    \(\Rightarrow x \in(\frac{-1}2,\frac32)\)

  • Question 5
    1 / -0

    If \(x=8-2 \sqrt{15}\), then find the value of \(\left(\frac{x+1}{\sqrt{x}}\right)^{2}\):

    Solution

    Given:

    \(x=8-2 \sqrt{(15)}\)

    \(x=(\sqrt{5})^{2}+(\sqrt{3})^{2}-2 \sqrt{(15)}\)

    \(\Rightarrow x=(\sqrt{5}-\sqrt{3})^{2}\)

    \(\Rightarrow \sqrt{x}=\sqrt{5}-\sqrt{3}\)

    And \(\frac1{\sqrt{x}}=\frac{(\sqrt{5}+\sqrt{3})}2\)

    According to question,

    \(\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}=\left[\sqrt{5}-\sqrt{3}+\left(\frac{\sqrt{5}+\sqrt{3}}{2}\right)\right]^{2}\)

    \(\Rightarrow\left[\frac{3 \sqrt{5}-\sqrt{3}}{2}\right]^{2}\)

    \(\Rightarrow\left[\frac{45+3-6 \sqrt{15}}{4}\right]\)

    \(\Rightarrow \frac{48-6 \sqrt{15}}{4}\)

    \(\Rightarrow 12-\frac{3 \sqrt{15}}{2}\)

  • Question 6
    1 / -0

    The equations \(a x+9 y=1\) and \(9 y-x-1=0\) represent the same line if \(a=\)

    Solution

    Given:

    \(=a x+9 y=1\) ......(i)

    \(=9 y-x-1=0\) ........(ii)

    From equation (ii) we get,

    \(-x+9 y=1\) ..........(iii)

    On comparing eq (iii) and eq (i)

    We get, \(a=-1\)

  • Question 7
    1 / -0

    Sum of two rational numbers is ______ number.

    Solution

    The sum of two rational numbers is a rational number.

    Ex: Let two rational numbers are \(\frac12\) and\(\frac13\)

    Now, \(\frac12+\frac13=\frac56\) which is a rational number.

  • Question 8
    1 / -0

    Solve the inequality \(-15<\frac{3(x-2)}{5} \leq 0\)

    Solution

    Given inequality is:

    \(-15<\frac{3(x-2)}{5} \leq 0\)

    Multiplying 5 all sides (Eliminating 5)

    \(-15 \times 5<5 \times \frac{3(x-2)}{5} \leq 5 \times 0\)

    \(-75<3(x-2) \leq 0\)

    Dividing 3 all sides (Eliminating 3)

    \(\frac{-75}{3}<\frac{3(x-2)}{3} \leq \frac{0}{3}\)

    \(-25

    Adding 2 all sides (Eliminating 2)

    \(-25+2

    \(-23

    Thus, \(\mathrm{x}\) is a real number which is less than or equal to 2 and greater than \(-23\)

    Therefore, \(x \in(-23,2]\) is the solution

  • Question 9
    1 / -0

    If \(|x|<-5\) then the value of \(x\) lies in the interval:

    Solution

    Given,

    \(|{x}|<-5\)

    Now, LHS \(\geq 0\) and RHS \(<0\)

    Since LHS is non-negative and RHS is negative So, \(|x|<-5\) does not posses any solution.

  • Question 10
    1 / -0

    If \(2(3 x-4)-2<4 x-2 \geq 2 x-4 ;\) then the possible value of \(x\) can be:

    Solution

    Given: \(2(3 x-4)-2<4 x-2 \geq 2 x-4\)

    First by solving the inequation: \(2(3 x-4)-2<4 x-2\) we get,

    \(\Rightarrow 6 x-10<4 x-2\)

    \(\Rightarrow 2 x<8\)

    \(\Rightarrow x<4\)\(\quad\).....(1)

    Similarly, by solving the inequation \(4 x-2 \geq 2 x-4\) we get,

    \(\Rightarrow 2 x \geq-2\)

    \(\Rightarrow x \geq-1\)\(\quad\).....(2)

    From equation (1) and (2) we can say that \(-1 \leq x<4\)

    So, out of the given options the possible value which \(x\) can take is 2.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now