Self Studies

Linear Inequalities Test -11

Result Self Studies

Linear Inequalities Test -11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(a^{2}-b^{2}=88, a-b=4\) then find the value of \(a b\).

    Solution

    Given:

    \(a^{2}-b^{2}=88\)

    \(a-b=4\)

    \(a^{2}-b^{2}=(a-b)(a+b)\)

    \(a-b=4\) ......(1)

    \((a-b)(a+b)=88\)

    \(\Rightarrow 4 \times(a+b)=88\)

    \(\Rightarrow a+b=\frac{88}4\)

    \(\Rightarrow a+b=22\) ............(2)

    Adding equation (1) and equation (2), we get

    \(\Rightarrow a-b+a+b=4+22\)

    \(2 a=26\)

    \(\Rightarrow a=13\)

    Put the value of a in equation (2), we get

    \(13+b=22\)

    \(\Rightarrow b=9\)

    value of \(a b=13 \times 9\)

    \(\Rightarrow a b=117\)

    \(\therefore\) The value of \(a b\) is 117.

  • Question 2
    1 / -0

    Solve: \(-4=-7+3 x\)

    Solution

    Given:

    \(-4=-7+3 x\)

    \(\Rightarrow 3 x=7-4\)

    \(\Rightarrow x=\frac33\)

    \(\therefore x=1\)

  • Question 3
    1 / -0

    The graph of the inequations \(x \leq 0, y \leq 0\), and \(2 x+y+6 \geq 0\) is:

    Solution

    A triangular region in the 3rd quadrant

    Given inequalities x ≥ 0 , y ≥ 0 , 2x + y + 6 ≥ 0

    Now take x = 0, y = 0 and 2x + y + 6 = 0

    when x = 0, y = -6

    when y = 0, x = -3

    So, the points are A(0, 0), B(0, -6) and C(-3, 0)

     

    So, the graph of the inequations x ≤ 0 , y ≤ 0 , and 2x + y + 6 ≥ 0 is a triangular region in the 3rd quadrant.

     

  • Question 4
    1 / -0

    If the system of linear equations,

    \(2 x+2 y+3 z=a\)

    \(3 x-y+5 z=b\)

    \(x-3 y+2 z=c\)

    Where \(a, b, c\) are non-zero real numbers, has more than one solution, then:

    Solution

    If the system of equations has more than one solution, then \(D=0\) and \(D_{1}=D_{2}=D_{3}=0\). From the given set of equation, we form,

    \(D_{1}=0\)

    \(\Rightarrow\left|\begin{array}{ccc}a & 2 & 3 \\ b & -1 & 5 \\ c & -3 & 2\end{array}\right|=0\)

    Now,

    \(\Rightarrow a(-2+15)-2(2 b-5 c)+3(-3 b+c)=0\)

    \(\Rightarrow 13 a-4 b+10 c-9 b+3 c=0\)

    \(\Rightarrow 13 a-13 b+13 c=0\)

    \(\Rightarrow a-b+c=0\)

    \(\therefore b-a-c=0\)

  • Question 5
    1 / -0

    The solution of the inequality \(\frac{3(x-2)}5 \geq \frac{5(2-x)}3\) is:

    Solution

    Given,

    \(\frac{3(x-2)}5 \geq \frac{5(2-x)}3\)

    ⇒ 3(x – 2) × 3 ≥ 5(2 – x) × 5

    ⇒ 9(x – 2) ≥ 25(2 – x)

    ⇒ 9x – 18 ≥ 50 – 25x

    ⇒ 9x – 18 + 25x ≥ 50

    ⇒ 34x – 18 ≥ 50

    ⇒ 34x ≥ 50 + 18

    ⇒ 34x ≥ 68

    \(\Rightarrow x \geq \frac{68}{34}\)

    ⇒ x ≥ 2

    ⇒ x ∈ [2, ∞)

  • Question 6
    1 / -0

    Solve: \(\frac{-1}{(|x|-2)} \geq 1\) where x ∈ R, x ≠ ±2

    Solution

    Given,

    \(\frac{-1}{(|x|-2)}\geq 1\)

    ⇒\(\frac{-1}{(|x|-2)} \geq 0\)\)

    ⇒\({\{-1-(|x|-2)\}}{(|x|-2)} \geq 0\)

    ⇒\({\{1-|x|\}}{(|x|-2)} \geq 0\)

    ⇒\(\frac{-(|x|-1)}{(|x|-2)} \geq 0\)

    Using number line rule:

    1 ≤ |x| < 2

    ⇒ x ∈ (-2, -1) ∪ (1, 2)

  • Question 7
    1 / -0

    For what value of '\(a\)', does the inequality \(9 a-a^{2} \leq 17 a+15\) holds:

    Solution

    Given:

    \(9 a-a^{2} \leq 17 a+15\)

    On rearranging

    \(-a^{2}+9 a \leq 17 a+15\)

    Shifting the sign

    \(a^{2}-9 a \geq-17 a-15\)

    \(a^{2}-9 a+17 a+15 \geq 0\)

    \(a^{2}+8 a+15 \geq 0\)

    \(a^{2}+5 a+3 a+15 \geq 0\)

    \(a(a+5)+3(a+5) \geq 0\)

    \((a+3)(a+5) \geq 0\)

    So, \(-3\) and \(-5\) are the roots of the equation.

    Now look at the diagram given below,

    We see that all the numbers less than \(-5\) and all the numbers greater than -3 will give us positive result. While numbers between \(-5\) and \(-3\) will give us negative results.

    So, all the above value holds for the above equation.

  • Question 8
    1 / -0

    The graph of the inequalities x ≥ 0, y ≥ 0, 2x + y + 6 ≤ 0 is:

    Solution

    Given inequalities x ≥ 0, y ≥ 0, 2x + y + 6 ≤ 0

    Now take x = 0, y = 0 and 2x + y + 6 = 0

    when x = 0, y = -6

    when y = 0, x = -3

    So, the points are A(0, 0), B(0, -6) and C(-3, 0)

    Since region is outside from the line 2x + y + 6 = 0
    So, it does not represent any figure.

  • Question 9
    1 / -0

    The solution of \(|\frac2{(x-4)}|>1\) where \(x \neq 4\) is:

    Solution

    Given,

    \(|\frac2{(x-4)}|>1\)

    \(\Rightarrow \frac2{|x-4|}>1\)

    \(\Rightarrow 2>|x-4|\)

    \(\Rightarrow|x-4|<2\)

    \(\Rightarrow-2

    \(\Rightarrow-2+4

    \(\Rightarrow 2

    \(\Rightarrow x \in(2,6)\), where \(x \neq 4\)

    \(\Rightarrow x \in(2,4) \cup(4,6)\)

  • Question 10
    1 / -0

    If \(5 x-1<3 x+2\) and \(5 x+5>6-2 x\); then \(x\) can take which of the following values?

    Solution

    1st inequality:

    \(\Rightarrow 5 x-1<3 x+2\)

    \(\Rightarrow 2 x<3\)

    \(\Rightarrow x<\frac3 2\)

    \(\therefore x<1.5\)

    2nd inequality:

    \(\Rightarrow 5 x+5>6-2 x\)

    \(\Rightarrow 7 x>1\)

    \(\Rightarrow x>\frac17\)

    \(\therefore x>0.142\)

    \(\therefore {x}\) ranges between \(0.142\) and \(1.5\)

    \(\therefore {x}=1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now