Self Studies

Relations and Functions Test - 67

Result Self Studies

Relations and Functions Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let \(f: R-\{2\} \rightarrow R\) be defined by \(f(x)=\frac{x^2-4}{x-2}\) and \(g: R \rightarrow R\) be defined by \(g(x)=x+2\). The relation between \(f\) and \(g\) will be:

    Solution

    We have, \(f(x)=\frac{x^2-4}{x-2}, x \neq 2\).

    \(\Rightarrow  f(x)=\frac{(x-2)(x+2)}{x-2}=x+2\) for all \(x \neq 2\).

    \(\Rightarrow  f(x)=g(x)\) for all \(x \neq 2\).

    Thus, \(f(x)=g(x)\) for all \(x \in R-\{2\}\). 

    But, \(f(x)\) and \(g(x)\) have different domains.

    Infact, domain of \(f=R-\{2\}\) and domain of \(g=R\). 

    Therefore, \(f \neq g\).

  • Question 2
    1 / -0

    Find the domain of the function \(f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}\).

    Solution

    \(f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}\)

    Domain of function \(f(x)=\frac{(x+1)^2}{x^2-6 x-2 x+12}\)

    \(\Rightarrow f(x)=\frac{(x+1)^2}{x(x-6)-2(x-6)}\)

    \(\Rightarrow f(x)=\frac{(x+1)^2}{(x-2)(x-6)}\)

    It can be seen that the function \(f\) is defined for all real numbers except at \(\mathrm{x}=6\) and \(\mathrm{x}=2\).

    Hence, the domain of the function is \(\mathrm{R}-\{2,6\}\).

  • Question 3
    1 / -0

    Find the domain of \(f(x)=\sqrt{4-x^2}\).

    Solution

    We have,

    \(f(x)=\sqrt{4-x^2}\)

    Clearly, \(f(x)\) assumes real values for all \(x\) satisfying

    \(4-x^2 \geq 0\) 

    \(\Rightarrow-\left(x^2-4\right) \geq 0\) 

    \(\Rightarrow x^2-4 \leq 0\) 

    \(\Rightarrow(x-2)(x+2) \leq 0\) 

    \(\Rightarrow x \in[-2,2]\)

    Hence, Domain \((f)=\{-2,2\}\)

  • Question 4
    1 / -0

    If \(A=\{a, b\}\) and \(B=\{1,2,3\}\), find the value of \((A \times B) \cap(B \times A)\).

    Solution

    We have, \(A=\{a, b\}\) and \(B=\{1,2,3\}\)

    \(A \times B =\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\} \)

    \(B \times A =\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\} \)

    Clearly, \((A \times B) \cap(B \times A)=\phi\).

  • Question 5
    1 / -0

    If \(g=\{(1,1),(2,3),(3,5),(4,7)\}\) is a function and it is described by the formula, \(g(x)=\alpha x+\beta\), then what values should be assigned to \(\alpha\) and \(\beta\)?

    Solution

    Since no two ordered pairs in \(g\) have the same first component. 

    So, \(g\) is a function such that \(g(1)=1, g(2)=3, g(3)=5\) and \(g(4)=7\).

    It is given that \(g(x)=\alpha x+\beta\).

    \(\therefore g(1)=1\) and \(g(2)=3\) 

    In case of \(g(1)= \alpha \times 1 + \beta \)

    \(\Rightarrow \alpha+\beta=1\cdots(i)\)

    and in case of \(g(2)=\alpha \times 2 + \beta\)

    \(\Rightarrow 2 \alpha+\beta=3 \cdots(ii)\)

    On solving eq.(i) and (ii)

    \( \alpha=2, \beta=-1\)

  • Question 6
    1 / -0

    Find the range of the function \(f(x)=\frac{3}{2-x^2}\).

    Solution

    We have, \(f(x)=\frac{3}{2-x^2}\)

    For \(f(x)\) to be real, we must have

    \(2-x^2 \neq 0 \Rightarrow x \neq \pm \sqrt{2} \)

    \(\therefore \text { Domain }(f)=R-\{-\sqrt{2}, \sqrt{2}\}\)

    Let \(f(x)=y\). 

    Then,

    \(y=f(x) \Rightarrow y=\frac{3}{2-x^2}\) 

    \(\Rightarrow 2 y-x^2 y=3\) 

    \(\Rightarrow x^2 y=2 y-3\) 

    \(\Rightarrow x= \pm \sqrt{\frac{2 y-3}{y}}\)

    We observe that \(x\) will take real values other than \(-\sqrt{2}\) and \(\sqrt{2}\), if

    \(\frac{2 y-3}{y}>0\) 

    \(\Rightarrow y \in(-\infty, 0) \cup[\frac{3}{2}, \infty)\)

    So, range \(f=(-\infty, 0) \cup[\frac{3}{2}, \infty)\)

  • Question 7
    1 / -0

    If \(A=\{1,2,3, \ldots, 14\}\) and \(R\) is a relation defined on \(A\) such that \(R=\{(x, y): 3 x-y=0\) where \(x, y \in A\}\), then find the range of \(R\).

    Solution

    Given:

    \(A=\{1,2,3, \ldots, 14\}\) and \(R\) is a relation defined on \(A\) such that:

    \(R=\{(x, y): 3 x-y=0\) where \(x, y \in A\}\)

    When \(x=1 \in\), then:

    \(y=3 x\)

    \(=3 \times 1\)

    \(=3 \in A\)

    \(\Rightarrow(1,3) \in R\)

    When \(x=2 \in\) A, then:

    \(y=3 x\)

    \(=3 \times 2\)

    \(=6 \in A\)

    \(\Rightarrow(2,6) \in R\)

    When \(x=3 \in\) A, then:

    \(y=3 x\)

    \(=3 \times 3\)

    \(=9 \in A\)

    \(\Rightarrow(3,9) \in R\)

    When \(x=4 \in\) A, then:

    \(y=3 x\)

    \(=3 \times 4\)

    \(=12 \in A\)

    \(\Rightarrow(4,12) \in R\)

    So,

    \(R=\{(1,3),(2,6),(3,9),(4,12)\}\)

    As, we know that,

    Range \((R)=\{b:(a, b) \in R\}\)

    \(\Rightarrow\) Range \((R)=\{3,6,9,12\}\)

  • Question 8
    1 / -0

    If \(f: A \rightarrow R, f(x)=x^2+1\), where \(A=\{-1,0,2,4\}\), then find the range of \(f\).

    Solution

    We have,

    \(f(x)=x^2+1\).

    \(\therefore  f(-1)=(-1)^2+1=2\), 

    \(f(0)=0^2+1=1\), 

    \(f(2)=2^2+1=5\) and \(f(4)=4^2+1=17\)

    So, \(f=\{(x, f(x)): x \in A\}=\{(-1,2),(0,1),(2,5),(4,17)\}\).

    Hence, Range of \((f)=\{2,1,5,17\}\)

  • Question 9
    1 / -0

    Let \(A=\{1,2,3\}\) and \(B=\{x: x \in N, x\) is prime less than 5\(\}\). Find \(A \times B\).

    Solution

    We have, 

    \(A=\{1,2,3\}\) 

    And, \(B=\{x: x \in N, x\) is prime less than 5\(\}=\{2,3\}\)

    \( A \times B=\{1,2,3\} \times\{2,3\}\)

    \(=\{(1,2),(1,3),(2,2),(2,3),(3,2),(3,3)\} \)

  • Question 10
    1 / -0

    If \(A\) and \(B\) are the domain and range respectively for the relation \(R\) such that \(R=\{(x, x+5)\) \(: x \in\{0,1,2,3,4,5\}\}\), then which of the following option is true?

    Solution

    Given:

    \(A\) and \(B\) are the domain and range respectively for the relation \(R\) such that

    \(R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}\)

    So, the relation R can be re-written as:

    \(R=\{(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)\}\)

    As we know that,

    Domain of \((R)=\{a:(a, b) \in R\}\)

    \(\Rightarrow {A}=\{0,1,2,3,4,5\}\)

    We also know that,

    Range of \((R)=\{b:(a, b) \in R\}\)

    \(\Rightarrow B=\{5,6,7,8,9,10\}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now