Self Studies

Relations and Functions Test - 69

Result Self Studies

Relations and Functions Test - 69
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(A=\{-1,0,2,5,6,11\}, B=\{-2,-1,0,18,28,108\}\) and \(f(x)=x^2-x-2\). Find the value of \(f(A)\).

    Solution

    We have, \(f(x)=x^2=x-2\).

    \(\therefore  f(-1)=(-1)^2-(-1)-2=0\), 

    \(f(0)=0^2-0-2=-2\), 

    \(f(2)=2^2-2-2=0\)

    \(f(5)=5^2-5-2=18\), 

    \(f(6)=6^2-6-2=28\) 

    and \(f(11)=11^2-11-2=108\)

    Hence, \(f(A)=\{f(x): x \in A\}=\{f(-1), f(0), f(2), f(5), f(6), f(11)\}\)

    \(f(A)=\{0,-2,18,28,108\}\)

  • Question 2
    1 / -0

    Find the range of the function \(\mathrm{f}(\mathrm{x})=\sqrt{20-\mathrm{x}^{2}}\).

    Solution

    Given:

    \(f(x)=\sqrt{20-x^{2}}\)

    It is defined only when \(20-x^{2} \geq 0\)

    So, \(y \geq 0\)\(\quad\).........(i)

    Let, \(y=f(x)\)

    \(\Rightarrow y=\sqrt{20-x^{2}}\)

    Squaring both sides, we get,

    \(y^{2}=20-x^{2}\)

    \(\Rightarrow x^{2}=20-y^{2}\)

    \(\Rightarrow x=\sqrt{20-y^{2}}\)

    It is defined only when \(20-y^{2} \geq 0\)

    \(\Rightarrow y^{2} \leq 20\)

    \(\Rightarrow y^{2}-20 \leq 0\)

    \(\Rightarrow(y-2 \sqrt{5})(y+2 \sqrt{5}) \leq 0\)

    \(\Rightarrow y \in[-2 \sqrt{5}, 2 \sqrt{5}]\)\(\quad\)........(ii)

    From equations (i) and (ii), we get:

    \(y \in[0,2 \sqrt{5}]\)

  • Question 3
    1 / -0

    The cartesian product \(A \times A\) has 9 elements among which are found \((-1,0)\) and \((0,1)\). Find the set \(A\) and the remaining elements of \(A \times A\).

    Solution

    Since \((-1,0) \in A \times A\) and \((0,1) \in A \times A\). Therefore,

    \(\therefore (-1,0) \in A \times A \Rightarrow-1,0 \in A\) 

    and \((0,1) \in A \times A \Rightarrow 0,1 \in A \)

    \(-1,0,1 \in A\)

    It is given that \(A \times A\) has 9 elements. Therefore, \(A\) has exactly three elements.

    Hence, \(A=\{-1,0,1\}\).

  • Question 4
    1 / -0

    Let \(f=\left\{\left(x, \frac{x^2}{1+x^2}\right): x \in R\right\}\) be a function from \(R\) into \(R\). Determine the range of \(f\).

    Solution

    Let \(y=\frac{x^2}{1+x^2}\)

    \(\Rightarrow y+x^2 y=x^2\)

    \(\Rightarrow y=x^2(1-y) \)

    \(\Rightarrow x^2=\frac{y}{1-y} \)

    \(\Rightarrow x=\sqrt{\frac{y}{1-y}}\)

    Since, \({x}\) is real

    \(\Rightarrow \frac{y}{1-y} \geq 0\)

    \(\Rightarrow \frac{y(1-y)}{(1-y)^2} \geq 0\)

    \(\Rightarrow y(1-y) \geq 0 \text { and }(1-y)^2>0\)

    \(\Rightarrow 0 \leq y \leq 1 \text { and }-y>-1\)

    \(\Rightarrow 0 \leq y \leq 1 \text { and } y<1\)

    Hence, \(0 \leq \mathrm{y}<1\)

    So, the range of \(f\) is \(\{0,1\}\).

  • Question 5
    1 / -0

    If \(A=\{2,3,4\}\) and \(B=\{5,6\}\), then how many subsets does \(A \times B\) have?

    Solution

    Given:

    \(A=\{2,3,4\} ; B=\{5,6\}\)

    We know that:

    For any two non-empty sets \({A}\) and \({B}\), we have:

    I. \(A \times B=\{(a, b) \mid a \in A\) and \(b \in B\}\)

    II. \(B \times A=\{(b, a) \mid a \in A\) and \(b \in B\}\)

    III. Any two ordered pairs \((a, b)=(c, d)\) if and only if \(a=c\) and \(b=d\).

    Then,

    \({A} \times {B}=\{(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)\}\)

    The number of elements in \(A \times B\) i.e.,

    \(n(A \times B)=6\)

    Therefore, the number of subsets of\(A \times B=2^{n}\)

    \(=2^{6}\)

    \(=64\)

    Therefore, there are 64 subsets for \(A \times B\).

  • Question 6
    1 / -0

    A Cartesian product \(A \times B\) consists of 6 elements. If three of these are \((2,4),(4,6)\) and (5, 6), find the Cartesian set \({B} \times {A}\).

    Solution

    Given:

    \((2,4),(4,6)\) and \((5,6)\) are three elements in \(A \times B\).

    Also, \(A \times B\) has 6 elements.

    As we know that,

    \(n(A \times B)=n(A) \times n(B)\)

    \(\Rightarrow {n}({A} \times {B})=6\)

    \(=3 \times 2\)

    By the definition of Cartesian Product,

    \(A \times B=\{(a, b): a \in A\) and \(b \in B)\}\)

    \(\Rightarrow {n}({A})=3\) and \({n}({B})=2\)

    Thus, the elements of set \({A}\) is \(\{2,4,5\}\) and set \({B}\) is \(\{4,6\}\).

    Now,

    \(B \times A=\{4,6\} \times\{2,4,5\}\)

    \(=\{(4,2),(4,4),(4,5),(6,2),(6,4),(6,5)\}\)

    Therefore,

    \({B} \times {A}=\{(4,2),(4,4),(4,5),(6,2),(6,4),(6,5)\}\)

  • Question 7
    1 / -0

    Let \(\mathrm f=\{(1,1),(2,3),(0,-1),(-1,-3)\}\) be a function from \(\mathrm{Z}\) to \(\mathrm{Z}\) defined by \(\mathrm{f(x)=a x+b}\), for some integers \(\mathrm{a, b}\). Determine \(\mathrm{a, b}\).

    Solution

    \(\mathrm{f}=\{(1,1),(2,3),(0,-1),(-1,-3)\} \)

    \(\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}\)

    \((1,1) \in \mathrm{f}\)

    \(\Rightarrow \mathrm{f}(1)=1\)

    \(\Rightarrow \mathrm{a} \times 1+\mathrm{b}=1\)

    \( \Rightarrow \mathrm{a}+\mathrm{b}=1 \ldots . .(1)\)

    \( (0,-1) \in \mathrm{f}\)

    \(\Rightarrow \mathrm{f}(0)=-1\)

    \(\Rightarrow \mathrm{a} \times 0+\mathrm{b}=-1\)

    \(\Rightarrow \mathrm{b}=-1\)

    On substituting \(b=-1\) in eqn (1), we get

    \( a+(-1)=1 \)

    \(\Rightarrow a=1+1=2\)

    Thus the respective values of \(\mathrm a\) and \(\mathrm b\) are \(2\) and \(-1\).

  • Question 8
    1 / -0

    If \(A\) and \(B\) are two non-empty sets having n elements in common, then what is the number of common elements in the sets \(A \times B\) and \(B \times A ?\)

    Solution

    We know that:

    Let \(A\) and \(B\) be any two sets.

    \(A \times B=\{(x, y)\) where \(x\) in \(A\) and \(y\) in \(B\}\)

    Let \({A}\) and \({B}\) are two non-empty sets.

    Consider, \(A=\{1,2,3\}\) and \(B=\{2,3\}\)

    Here, in \({A}\) and \({B}\), there are 2 common elements.

    Now,

    \({A} \times {B}=\{(1,2),(1,3),(2,2),(2,3),(3,2),(3,3)\}\)

    And, \({B} \times {A}=\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}\)

    In \(A \times B\) and \(B \times A\), there are \(4(=2^{2})\) i.e., common elements \(=n^{2}\)

    Therefore, if \({A}\) and \({B}\) are two non-empty sets having \({n}\) elements in common, then \({n}^{2}\) common elements in the sets \(A \times B\) and \(B \times A\).

  • Question 9
    1 / -0

    If \(R\) is the relation "less than" from \(A=(1,2,3,4,5)\) to \(B=(1,4,5)\), then the set of ordered pairs corresponding to \(R\) will be:

    Solution

    It is given that \((x, y) \in R \Leftrightarrow x

    For the elements of the given sets \(A\) and \(B\), we find that

    \(1<4,1<5,2<4,2<5,3<4,3<5\) and \(4<5 \)

    \(\therefore  (1,4) \in R,(1,5) \in R,(2,4) \in R,(2,5) \in R,(3,4) \in R,(3,5) \in R \text { and }(4,5) \in R \)

    Thus, \( R=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\}\)

  • Question 10
    1 / -0

    Find the domain of the function \(f(x)\) defined by \(f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^2-1}}\).

    Solution

    \(f(x)\) is defined for all \(x\) satisfying

    \(4-x \geq 0\) and \(x^2-1>0 \)

    \(\Rightarrow  x-4 \leq 0 \text { and }(x-1)(x+1)>0 \)

    \(\Rightarrow  x \leq 4 \text { and }(x<-1 \text { or } x>1)\)

    \(\Rightarrow x \in(-\infty,-1) \cup(1,4]\)

    Hence, Domain \((f)=(-\infty,-1) \cup(1,4]\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now