Self Studies

Sequences and Series Test - 67

Result Self Studies

Sequences and Series Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The sum of first 12 terms of the series. \(1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+.......\) is:

    Solution

    As we know,

    Sum of the first \(n\) Natural Numbers:

    \(1+2+3+4+\ldots+n=\sum n=\frac{ n ( n +1)}{2}\)

    Sum of the square of the first \(n\) Natural Numbers:

    \(1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}=\sum n^{2}=\frac{n(n+1)(2 n+1)}{6}\)

    Sum of the cubes of the first \(n\) Natural Numbers:

    \(1^{3}+2^{3}+3^{3}+4^{3}+\ldots+ n ^{3}=\sum n ^{3}=\frac{[ n ( n +1)]^{2}}{4}\)

    Given,

    Series \(1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots . .+\) up to \(n\) terms.

    \(n^{th}\) term of the given series is \(T_{n}=1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}\).

    So, \(T_{n}=\sum n ^{2}=\frac{ n ( n +1)(2 n +1)}{6}\)

    \(=\frac{1}{6}\left[2 n ^{3}+3 n ^{2}+ n \right]\)

    Sum of \(n\) terms of the series, \(S_{ n }=\sum T _{ n }\)

    \(\Rightarrow S _{ n }=\frac{1}{6} \sum\left(2 n ^{3}+3 n ^{2}+ n \right)\)

    \(\Rightarrow S _{ n }=\frac{1}{3} \sum n ^{3}+\frac{1}{2} \sum n ^{2}+\frac{1}{6} \sum n\)

    \(\Rightarrow S _{ n }=\frac{[ n ( n +1)]^{2}}{12}+\frac{ n ( n +1)(2 n +1)}{12}+\frac{ n ( n +1)}{12} \)

    \(\Rightarrow S _{ n }=\frac{ n ( n +1)^{2}( n +2)}{12}\)

    As we have to find sum of 12 terms of series:

    So, \(n=12\)

    \(\therefore S _{12}=\frac{12(12+1)^{2}(12+2)}{12}\)

    \(\Rightarrow S _{12}=\frac{12 \times (13)^{2}\times (14)}{12}\)

    \(\Rightarrow S _{ 12}=169 \times 14\)

    \(\Rightarrow S _{ 12}=2366\)

  • Question 2
    1 / -0

    If \(a, b, c\) are in G.P., then the equations \(a x^{2}+2 b x+c=0\) and \(d x^{2}+2 e x+f\) \(=0\) have a common root if \(\frac{d }{ a} , \frac{e }{ b} ,\frac{ f }{ c}\) are in:

    Solution

    Given,

    \(a x^{2}+2 b x+c=0\)

    \(\Rightarrow a x^{2}+2 \sqrt{a c} x+c=0 \quad\left(\because b^{2}=a c\right) \)

    \(\Rightarrow(x \sqrt{a}+\sqrt{c})^{2}=0 \)

    \(\Rightarrow x=-\frac{\sqrt{c}}{\sqrt{a}}\)

    This satisfies \(dx ^{2}+2 ex + f =0\)

    \(\Rightarrow d \left[\frac{ c }{ a }\right]+2 e \left[-\frac{\sqrt{ c }}{\sqrt{ a }}\right]+ f =0 \)

    \(\Rightarrow\left(\frac{ dc }{ a }+ f \right)=2 e \sqrt{\frac{ c }{ a }} \)

    \(\Rightarrow\left(\frac{ d }{ a }+\frac{ f }{ c }\right)=2 e \sqrt{\frac{1}{ ac }} \)

    \(\Rightarrow \frac{ d }{ a }+\frac{ f }{ c }=\frac{2 e }{ b }\)

    Therefore, \(\frac{ d }{ a }, \frac{ e }{ b }, \frac{ f }{ c }\) are in AP.

  • Question 3
    1 / -0

    If \(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\) are in AP, then \(\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)\) is equal to:

    Solution

    Given,

    \(\frac{1 }{ a} , \frac{1 }{ b} , \frac{1 }{ c}\) are in AP.

    \(\frac{1 }{ a}-\frac{1 }{ b}=\frac{1 }{ b}-\frac{1 }{ c} \)

    So, \((\frac{1 }{ a}+\frac{1 }{ b}-\frac{1 }{ c})(\frac{1 }{ b}+\frac{1 }{ c}-\frac{1 }{ a})=(\frac{2 }{ a}-\frac{1 }{ b})(\frac{2 }{ c}-\frac{1 }{ b}) (\frac{2}{c} –\frac{ 1}{b})\)

    \(=\frac{4 }{ a c}-\frac{2 }{ bc}-\frac{2 }{ ab}+\frac{1 }{ b^{2} }\)

    \(=\frac{4 }{ a c}-(\frac{1 }{ b})[(\frac{2 }{ c}+\frac{2 }{ a})]+\frac{1 }{ b^{2} }\)

    \(=\frac{4 }{ a c}-(\frac{2 }{ b})(\frac{2 }{ b})+\frac{1 }{ b^{2}} \)

    \(=\frac{4 }{ a c}-\frac{4 }{ b^{2}}+\frac{1 }{ b^{2}} \)

    \(=\frac{4 }{ a c}-\frac{3 }{ b^{2}}\)

  • Question 4
    1 / -0

    Find the sum of all numbers divisible by 6 in between 100 to 400.

    Solution

    Numbers divisible by \(6\) between \(100\) to \(400\) are \(102, 108, 114...396\) forming an AP series.

    First term \((a)=102\)

    Common difference \((d)=108-102=6\)

    \(n ^{\text {th }}\) term \((a_n)=396\)

    As we know,

    \(n^{\text {th }}\) term of AP is given by,

    \(a_{n}=a+(n-1) d\)

    \(\Rightarrow 396=102+(n-1) \times 6 \)

    \(\Rightarrow 396-102=(n-1) \times 6 \)

    \(\Rightarrow 294=(n-1) \times 6 \)

    \(\Rightarrow \frac{294}{6}=(n-1)\)

    \(\Rightarrow 49=n-1 \)

    \(\therefore n=50\)

    Now,

    Sum of all series \((S_n)=\frac{ n }{2}(a+l)\) (where \(l=\) last term)

    \(\therefore\) Sum of all numbers \(=\frac{50}{2}(102+396)\)

    \(=25 \times 498\)

    \(=12450\)

    So, the sum of all numbers divisible by \(6\) in between \(100\) to \(400\) is \(12450\).

  • Question 5
    1 / -0

    The sum of the first \(n\) terms of the series \(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots\) is equal to:

    Solution
    The sum of the first 'n' terms of the series,
    \(S _{ N }=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots+ n^{th}\) term
    \(\Rightarrow\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+\left(1-\frac{1}{16}\right)+\ldots+ n^{th}\) term
    \(\Rightarrow\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^{2}}\right)+\left(1-\frac{1}{2^{3}}\right)+\left(1-\frac{1}{2^{4}}\right)+\ldots+\left(1-\frac{1}{2^{ n }}\right)\)
    \(\Rightarrow\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^{2}}\right)+\left(1-\frac{1}{2^{3}}\right)+\left(1-\frac{1}{2^{4}}\right)+\ldots+\left(1-\frac{1}{2^{ n }}\right)\)
    \(\Rightarrow(1+1+1+\ldots+ n )+\left[\left(-\frac{1}{2}\right)+\left(-\frac{1}{2^{2}}\right)+\left(-\frac{1}{2^{3}}\right)+\left(-\frac{1}{2^{4}}\right)+\ldots+\left(-\frac{1}{2^{ n }}\right)\right]\)
    \(\Rightarrow(1+1+1+\ldots+ n )-\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{3}}\right)+\left(\frac{1}{2^{4}}\right)+\ldots+\left(\frac{1}{2^{n}}\right)\right]\)
    Now, \((1+1+1+\ldots+ n )= n \)...(1)
    And \(\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{3}}\right)+\left(\frac{1}{2^{4}}\right)+\ldots+\left(\frac{1}{2^{n}}\right)\right]\) is clearly sum of GP.
    As the common ratio \((r)=\frac{\left(\frac{1}{2^{2}}\right)}{\left(\frac{1}{2}\right)}=\frac{\left(\frac{1}{2^{3}}\right)}{\left(\frac{1}{2^{2}}\right)}=\ldots=\frac{\left(\frac{1}{2^{n}}\right)}{\left(\frac{1}{2^{n-1}}\right)}=\frac{1}{2}\) which is constant.
    Given,
    \(a_{1}=\frac{1 }{ 2}, r=\frac{1 }{ 2}\)
    Sum of \(n\) terms of GP is given by,
    \(S _{ n }=\frac{ a _{1}\left(1- r ^{ n }\right)}{1- r }, r \neq 1\)
    \(=\frac{\left(\frac{1}{2}\right)\left(1-\left(\frac{1}{2}\right)^{ n }\right)}{1-\left(\frac{1}{2}\right)} \)
    \(=\frac{\left(\frac{1}{2}\right)\left(1-\left(\frac{1}{2}\right)^{ n }\right)}{\left(\frac{1}{2}\right)} \)
    \(=\frac{\left(1-\left(\frac{1}{2}\right)^{ n }\right)}{1} \)
    \(=1-\left(\frac{1}{2}\right)^{ n }\)
    \(=1-2^{-n} \)...(2)
    Now from (1) and (2), we get
    \(S_{n}=n-\left(1-2^{-n}\right) \)
    \(=2^{-n}+n-1\)
  • Question 6
    1 / -0

    If \(\frac{2 }{ 3}, K , \frac{5 }{ 8}\) are in AP, then value of \(K\) is:

    Solution

    Given,

    AP series \(=\frac{2}{3}, K , \frac{5}{8}\)

    Let,

    \(a =\) first term \( =\frac{2}{3}\)

    \(b =\) second term \(= K\)

    \(c=\) third term \(=\frac{5}{8}\)

    Since, given three terms are in AP.

    So, \(d = b - a = c - b \) (where \(d =\) common difference\()\)

    \(\therefore K -\frac{2}{3}=\frac{5}{8}- K\)

    \(\Rightarrow 2 K =\frac{2}{3}+\frac{5}{8}\)

    \(\Rightarrow 2 K =\frac{15+16}{24}\)

    \(\Rightarrow 2 K =\frac{31}{24}\)

    \(\Rightarrow K =\frac{31}{48}\)

    So, the value of \(K\) is \(\frac{31}{48}\).

  • Question 7
    1 / -0

    If the product of three terms in a GP is 27. Find its middle term.

    Solution

    Let the three terms be \(\frac{a}{r}, a\) and \(ar\).

    Where \(a\) and \(r\) are the first term and common ratio of the GP.

    Given,

    The product of three terms in a GP \(=27\)

    \(\therefore \frac{ a }{ r } \times a \times ar =27 \)

    \(\Rightarrow a ^{3}=27\)

    \(\Rightarrow a ^{3}=3^3\)

    \(\therefore a=3\)

    So, the middle term of the GP is \(3\).

  • Question 8
    1 / -0

    The product of three numbers in AP is 224 and the largest number is 7 times the smallest. Find the largest number.

    Solution

    Let the three numbers in AP be \(a - d,~ a, ~a + d ~ ( d >0)\).

    Given,

    The largest number is \(7\) times the smallest.

    So, \(a+d=7(a-d)\)

    \(\Rightarrow a+d=7 a-7 d\)

    \(\Rightarrow 8 d =6 a\)

    \(\Rightarrow d=\frac{3 a}{ 4}\)

    The product of three numbers in AP \(=224\)

    \(\therefore (a-d)\times a \times (a+d)=224\)

    \(\Rightarrow a \left( a ^{2}- d ^{2}\right)=224 \)...(1)

    Putting the value of \(d\) in equation (1), we get

    \( a\left(a^{2}- \left(\frac{3 a}{4}\right)^{2}\right)=224\)

    \(\Rightarrow a\left(a^{2}-\frac{9 a^{2}}{16}\right)=224\)

    \(\Rightarrow a\left(\frac{16 a^{2}-9 a^{2}}{16}\right)=224\)

    \(\Rightarrow a \times 7 a ^{2}=224 \times 16\)

    \(\Rightarrow 7 a ^{3}=224 \times 16\)

    \(\Rightarrow a ^{3}=\frac{224 \times 16}{7}\)

    \(\Rightarrow a^{3}=32 \times 16\)

    \(\Rightarrow a^{3}=512\)

    \(\Rightarrow a^{3}=8^{3}\)

    As bases are same,

    \(\therefore a =8\)

    \(d =\frac{3 a }{ 4}=\frac{3 \times 8}{ 4}=6\)

    \(a - d =8-6=2\)

    \(a + d =8+6=14\)

    So, the three numbers are \(2,8,14\) and in these numbers \(14\) is the largest number.

  • Question 9
    1 / -0

    Which term of an AP 403, 397, 391 ....... is the first negative term?

    Solution

    Term of an AP are \(403,397,391 \ldots \)

    So, First term \((a) =403\)

    Common difference \((d)=397-403=-6\)

    Let \(n ^{\text {th }}\) term is the first negative term of the given AP.

    As we know,

    \(n^{\text {th}}\) term of AP is given by,

    \(a_ n=a+(n-1) \times d\)

    \(\therefore a_n =403+(n-1) \times-6 \)

    \(\Rightarrow a_n=403-6 n+6 \)

    \(\Rightarrow a_n=409-6 n\)

    Now, we have to find the suitable value of \(n\), so that the value of \((409-6 n)\) is negative.

    Checking options:

    Taking \(n=68\)

    \(\therefore a_{n}=409-6 \times 68\)

    \(\Rightarrow a_n=409-408\)

    \(\Rightarrow a_n=1\) (which is not negative)

    Now, putting \(n=69\), we get

    \(\therefore a_{n}=409-6 \times 69\)

    \(\Rightarrow a_n=409-414\)

    \(\Rightarrow a_n=-5\)

    This is the first negative term of the series.

    So, \(69^{\text {th}}\) term is the first negative term of given series.

  • Question 10
    1 / -0

    The geometric mean and harmonic mean of two non-negative observations are 10 and 8 respectively. Then what is the arithmetic mean of the observations equal to:

    Solution

    Given,

    The geometric mean of two non-negative observations \(=10\)

    The harmonic mean of two non-negative observations \(=8\)

    As we know,

    Relation between Arithmetic mean (AM),), Geometric mean (GM) and Harmonic mean (HM) is given by:

    \((GM)^2= (AM) \times (HM)\)

    \(\therefore (10)^2=AM \times 8\)

    \(\Rightarrow 100= AM \times 8\)

    \(\Rightarrow \frac{100}{8}=AM\)

    \(\therefore AM= 12.5\)

    So, the arithmetic mean of the observations is \(12.5\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now