Self Studies

Sequences and Series Test - 68

Result Self Studies

Sequences and Series Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    In a GP of positive terms, if every term is equal to the sum of the next two terms. Find the common ratio of the GP.

    Solution

    As we know,

    If the first term of a GP is \(a\) and the common ratio is \(r\), then in this case

    GP \(=a, a r, a r^{2} \ldots \ldots \)

    Given that every term is equal to the sum of next two terms.

    So, \(a = ar + ar ^{2}\)

    Taking \(a=1\), we get

    \(1=r+r^{2}\)

    \(\Rightarrow r^{2}+r-1=0\)

    Using Sridharacharya formula \(\left(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\right)\), to solve above equation.

    \(a=1 , b=1 ,c=-1\)

    \(\therefore r=\frac{-1\pm\sqrt{1^2-4\times 1\times -1}}{2\times 1} \)

    \(\Rightarrow r=\frac{-1\pm\sqrt{1+4}}{2}\)

    \(\Rightarrow r=\frac{-1\pm\sqrt{5}}{2}\)

    \(\Rightarrow r =\frac{\sqrt{5}-1}{2}\)

    Above equation can also be written as:

    \(r =2 \times \frac{\sqrt{5}-1}{4}\)

    As we know,

    \(\sin 18^\circ =\frac{\sqrt{5}-1}{4}\)

    \(\therefore r=2 \sin 18^{\circ}\)

    So, the common ratio of the GP is \(2 \sin 18^{\circ}\).

  • Question 2
    1 / -0

    The harmonic mean of two numbers is 4, Their arithmetic mean A and the geometric mean G satisfy the relation 2A + G2 = 27, then the two numbers are:

    Solution

    As we know,

    If \(x\) and \(y\) be the two numbers, then arithmetic mean \((A)\), Geometric mean \((G)\) and Harmonic mean \((H)\) of \(x\) and \(y\) is given by,

    \(A=\frac{x+y}{2} \)...(1)

    or \(2A= (x+y)\)...(2)

    \(G^{2}=x y\)...(3)

    \(H= \frac{2 x y}{x+y}\)...(4)

    Given,

    The harmonic mean of two number \(=4\)

    \(\therefore \frac{2 x y}{x+y}=4 \)

    \(\Rightarrow 2 x y=4(x+y) \)

    \(\Rightarrow x y=2(x+y) \)

    From equation (2) and (3), we get

    \(G^{2}=2 \times 2A \)

    \(\Rightarrow G^{2}=4 A \)...(5)

    Arithmetic mean \((A)\) and Geometric mean \((G)\) satisfy the relation:

    \(2 A+G^{2}=27 \)

    \(\therefore 2 A+4A=27 \)

    \(\Rightarrow 6 A=27 \)

    \(\Rightarrow A=\frac{27}{6}\)

    \(\Rightarrow A=\frac{9}{2}\)

    From equation (1), (3) and (4), we have

    \(x+y=9\) and \(x y=18\)

    \(\therefore x=6 \) and \(y=3\)

    So, the two numbers are \(6\) and \(3\) that satisfy the relation \(2 A + G ^{2}=27\).

  • Question 3
    1 / -0

    Find the sum of the sequence -8, -5, -2, …, 7.

    Solution

    For the given sequence \(-8,-5,-2, \ldots, 7\), we have

    \(a=-8, d=3\) and

    Last term \(\left( a_{n}\right)=7\)

    \( a_{n}=a_{1}+(n-1) d \)

    \(\Rightarrow 7 =-8+(n-1) 3 \)

    \(\Rightarrow 7+8 =(n-1)^{3} \)

    \(\Rightarrow \frac{15}{3} =(n-1) \)

    \(\Rightarrow 5 =n-1 \)

    \(\Rightarrow n =5+1\)

    \(\Rightarrow n =6\)

    As we know,

    For any arithmetic sequence \(a_{1}, a_{2}, \ldots, a_{n}\), the sum of the series, \(S_{n}\left(a_{1}+a_{2}+\ldots+a_{n}\right)\) is given by,

    \(S_{n}=\frac{n}{2} \times[2 \times a+(n-1) \times d]\)

    Where \(a=\) First term of the sequence, \(d=\) Common difference, \(n=\) Number of terms in the sequence.

    \(\therefore S_{6}=\frac{6}{2} \times[2 \times(-8)+(6-1) \times 3]\)

    \(\Rightarrow S_{6}=3 \times[-16+5 \times 3]\)

    \(\Rightarrow S_{6}=3 \times[-16+15]\)

    \(\Rightarrow S_{6}=3 \times-1\)

    \(\Rightarrow S_{6}=-3\)

    So,the sum of the sequence\(-8,-5,-2, \ldots, 7\) is \(-3\).

  • Question 4
    1 / -0

    The first term of a GP is 1. The sum of the third term and fifth term is 90. The common ratio of GP is:

    Solution

    Let \(r\) be the common ratio of the GP.

    Given,

    First term of the GP \(=a=1\)

    Third term \(=ar^{3-1}=a r^{2} \)

    Fifth term \(=ar^{5-1}=a r^{4}\)

    Given,

    The sum of the third term and fifth term \(=90\)

    \(\therefore a r^{2}+a r^{4}=90 \)

    \(\Rightarrow a\left(r^{2}+r^{4}\right)=90 \)

    \(\Rightarrow 1 \times \left(r^{2}+r^{4}\right)=90 \)

    \(\Rightarrow r^{2}+r^{4}=90 \)

    \(\Rightarrow r^{4}+r^{2}-90=0 \)

    \(\Rightarrow r^{4}+ 10r^2-9r^2-90=0\)

    \(\Rightarrow (r^{2}+10) (r^{2}-9)=0\)

    \(\Rightarrow (r^{2}-9)=0\)

    \(\Rightarrow r^2=9\)

    \(\Rightarrow r=\pm3\)

    So, the common ratio of the given GP is \(\pm 3\).

  • Question 5
    1 / -0

    The sum of the series 5 + 9 + 13 + … + 49 is:

    Solution

    The given series is \(5+9+13+\ldots+49\) which is an arithmetic progression (AP) series.

    So, First term \((a)=5\)

    Common difference \((d)=4\)

    Last term \((l)=49=n^{th}\) term

    As we know,

    \(n^{th}\) term of AP is given by,

    \(\therefore a+(n-1) d=49 \)

    \(\Rightarrow 5+(n-1)4=49 \)

    \(\Rightarrow 5-4+4n=49 \)

    \(\Rightarrow 1+4n=49 \)

    \(\Rightarrow 4 n=48 \)

    \(\Rightarrow n=12\)

    The sum of the AP series is given by,

    \( S _{n}=\frac{n}{2}(a+l) \)

    \(\therefore S _{n}=\frac{12}{2}(5+49)\)

    \(\Rightarrow S _{n}=6 \times 54\)

    \(\Rightarrow S _{n}=324\)

    So, the sum of the series \(5 + 9 + 13 + … + 49\) is \(324\).

  • Question 6
    1 / -0

    Find the sum of the series 5 + 55 + 555 + ..... upto n terms.

    Solution

    Given,

    \(5+55+555+\ldots \ldots\) to \(n\) terms

    \(=5 \times[1+11+111+\ldots . .\) to \(n\) terms \(]\)

    \(=\frac{5}{9} \times [9+99+999+\ldots\) to \(n\) terms \(]\)

    \(=\frac{5}{9} \times\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots\right.\) to \(n\) terms \(]\)

    \(=\frac{5}{9} \times\left[\left(10+10^{2}+10^{3}+\ldots .\right.\right.\) to \(n\) terms \(\left.)-n\right]\)

    So, \(a=\frac{5}{9}, r=10\)

    As we know that,

    \(S_{n}=a\left(\frac{1-r^{n}}{1-r}\right)\) for \(|r|<1\)

    \( S_{n}=a\left(\frac{r^{n}-1}{r-1}\right) \) for \(|r|>1 \)

    As common ratio \((r)>1 \), so the sum of series is given by,

    \( S_{n}=a\left(\frac{r^{n}-1}{r-1}\right) \)

    \(\therefore S_n =\frac{5}{9} \times\left[\frac{10 \times\left(10^{n}-1\right)}{(10-1)}-n\right] \)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{10 \times\left(10^{n}-1\right)}{9}-n\right]\)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{10^1 \times 10^{n}-10}{9}-n\right]\)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{(10)^{n+1}-10}{9}-n\right]\)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{(10)^{n+1}-10-9n}{9}\right]\)

    \(\Rightarrow S_n=\frac{5}{81} \cdot \left(10^{n+1}-9 n-10\right)\)

    So, the required sum is \(\frac{5}{81} \cdot\left(10^{n+1}-9 n-10\right)\).

  • Question 7
    1 / -0

    What is the sum of first eight terms of the series \(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots ?\)

    Solution

    Given summation is a GP with common ratio \(r =-\frac{1}{2}\).

    For the given GP,

    First term \((a) =1\)

    Common ratio \((r) =-\frac{1}{2}\)

    Number of terms \((n) =8\)

    As we know,

    \(S_{n} =\frac{a\left(r^{n}-1\right)}{r-1} \quad [r>1] \)

    \(S_{n} =\frac{a\left(1-r^{n}\right)}{1-r} \quad [r<1] \)

    Since \(r<1\), the sum of the G.P is given by,

    \(S_{n} =\frac{a\left(1-r^{n}\right)}{1-r}\)

    Sum of first eight terms \( (S_{8})=\frac{1\left(1-\left(-\frac{1}{2}\right)^{8}\right)}{1-\left(-\frac{1}{2}\right)} \)

    \(\Rightarrow S_8=\frac{1\left(1-\left(\frac{1}{256}\right)\right)}{\frac{3}{2}}\)

    \(\Rightarrow S_8=\frac{2\times \left(\frac{255}{256}\right)}{3} \)

    \(\Rightarrow S_8=\frac{2 \times 255}{3 \times 256} \)

    \(\Rightarrow S_8=\frac{85}{128}\)

    Therefore, the sum of the first 8 terms of the series \(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots\) is \(\frac{85}{128}\).

  • Question 8
    1 / -0

    If the sequence \(\left\{ S _{ n }\right\}\) is a geometric progression and \(S _{2} S _{11}= S _{ p } S _{8}\), then what is the value of \(p\)?

    Solution

    Given,

    \(S _{2} S _{11}= S _{ p } S _{8}\)

    The sequence \(\left\{ s _{n}\right\}\) is a geometric progression.

    As we know,

    \(n^{\text {th }}\) term of the GP is given by:

    \(a_n={ar }^{n-1}\)

    So, \(S_{2}={ar}^{2-1}={ar}\)

    \(\Rightarrow S_{11}={ar}^{11-1}={ar}^{10}\)

    \(\Rightarrow S _{ p }= ar ^{p-1} \)

    \(\Rightarrow S _{8}={ar}^{8-1}= ar ^{7}\)

    Now,

    \( S_{2} S _{11}= S_{ p } S _{8} \)

    \(\Rightarrow ar \times ar ^{10}= ar ^{ p -1} \times ar ^{7} \)

    \(\Rightarrow r ^{ p -1}= r ^{4} \)

    \(\Rightarrow p -1=4 \)

    \(\Rightarrow p =5\)

  • Question 9
    1 / -0

    If the GM and AM between two number are in the ratio n : m, then what is the ratio between the two numbers?

    Solution

    Let the two numbers be \(a\) and \(b\).

    As we know,

    \(A M=\frac{(a+b)}{2}\) and \(G M=\sqrt{a b}\)

    Given,

    \(GM : AM = n: m\)

    \(\Rightarrow AM : GM = m : n \)

    \(\Rightarrow \frac{ a + b }{2 \sqrt{ ab }}=\frac{ m }{ n } \)

    \(\Rightarrow \frac{( a + b )^{2}}{4 ab }=\frac{ m ^{2}}{ n ^{2}} \)...(i)

    \(\Rightarrow \frac{( a + b )^{2}-4 ab }{4 ab }=\frac{ m ^{2}- n ^{2}}{ n ^{2}} \)

    \(\Rightarrow \frac{( a - b )^{2}}{4 ab }=\frac{ m ^{2}- n ^{2}}{ n ^{2}} \)...(ii)

    On dividing equation (i) and (ii), we get

    \(\frac{( a + b )^{2}}{( a - b )^{2}}=\frac{ m ^{2}}{ m ^{2}- n ^{2}}\)

    Squaring both sides, we get

    \(\frac{a+b}{a-b}=\frac{m}{\sqrt{m^{2}-n^{2}}}\)

    Using componendo and dividendo both sides, we get

    \( \frac{(a+b)+(a-b)}{(a+b)-(a-b)}=\frac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}}\)

    \(\Rightarrow \frac{a+b+a-b}{a+b-a+b}=\frac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}}\)

    \(\Rightarrow \frac{2 a}{2 b}=\frac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}}\)

    \(\Rightarrow \frac{a}{b}=\frac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}}\)

    \(\Rightarrow a:b=(m+\sqrt{m^{2}-n^{2}}) :(m-\sqrt{m^{2}-n^{2}})\)

    So, the ratio between two numbers is \((m+\sqrt{m^{2}-n^{2}}):(m-\sqrt{m^{2}-n^{2}})\).

  • Question 10
    1 / -0

    If \(\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}\) be the harmonic mean of \(a\) and \(b\) then value of \(n\) is:

    Solution

    Given,

    \(\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}\) be the harmonic mean of \(a\) and \(b\).

    As we know,

    The harmonic mean between two numbers \(a\) and \(b\) is given by,

    \(H M=\frac{2 ab }{a+b}\)

    \(\therefore \frac{2 ab }{a+b}=\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}} \)

    \(\Rightarrow 2 a b \times\left(a^{n}+b^{n}\right)=(a+b)\left(a^{n+1}+b^{n+1}\right) \)

    \(\Rightarrow 2 a^{n+1} b+2 a^{n} b^{n+1}=a^{n+2}+b^{n+2}+a^{n+1} b+2 a^{n} b^{n+1} \)

    \(\Rightarrow a^{n+2}+b^{n+2}-a^{n+1} b-a^{n} b^{n+1}=0 \)

    \(\Rightarrow a^{n+1}(a-b)-b^{n+1}(a-b)=0 \)

    \(\Rightarrow\left(a^{n+1}-b^{n+1}\right)(a-b)=0 \)

    \(\Rightarrow \left(a^{n+1}-b^{n+1}\right)=0\)

    \(\Rightarrow a^{n+1}=b^{n+1}\) (this is possible only when \(n+1=0\))

    \(\therefore n = -1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now