Let,
First term \(= a\)
Common ratio \(= r\)
Given,
\(a-a r^{2}=768\)
\(\Rightarrow a\left(1-r^{2}\right)=768\)...(1)
\(a r^{2}-a r^{6}=240\)
\(\Rightarrow a r^{2}\left(1-r^{4}\right)=240\)...(2)
Dividing equation (2) by (1), we get
\(\frac{a r^{2}\left(1-r^{4}\right)}{a\left(1-r^{2}\right)}=\frac{240 }{768}\)
\(\Rightarrow \frac{[a r^{2}\left(1-r^{2}) (1+r^2)\right)}{a\left(1-r^{2}\right)}=\frac{240 }{768}\)
\(\Rightarrow r^2(1+r^2)=\frac{5}{16} \)
\(\Rightarrow r^2+r^4=\frac{5}{16} \)
\(\Rightarrow 16r^2+16r^4=5\)
\(\Rightarrow 16r^4+16r^2-5=0\)
Using Sridharacharaya formula, we get
\(r^2=\frac{-16\pm\sqrt{(16)^2-4 \times 16 \times-5}}{2\times 16}\)
\(\Rightarrow r^2=\frac{-16\pm\sqrt{256+320}}{32}\)
\(\Rightarrow r^2=\frac{-16\pm\sqrt{576}}{32}\)
\(\Rightarrow r^2=\frac{-16\pm24}{32}\)
\(\Rightarrow r^2=\frac{-16+24}{32}\) or \(r^2=\frac{-16-24}{32}\)
\(\Rightarrow r^2=\frac{8}{32}\) or \(r^2=\frac{-40}{32}\)
\(\Rightarrow r^2=\frac{1}{4}\) or \(r^2=\frac{-5}{4}\)
\(\Rightarrow r=\pm \frac{1}{2}\) or \(r=\pm \frac{\sqrt{5}}{2}\)
So, \(r=\frac{1}{2}, \frac{-1}{2}\) or \(r= \frac{\sqrt{5}}{2},\frac{\sqrt{-5}}{2}\)
Considering only the real values of \(r\), from equation (1) we get
\(a(1- \frac{1}{4})=768\)
\(\Rightarrow a\times \frac{3}{4}=768\)
\(\Rightarrow a=\frac{768\times 4}{3}\)
\(\Rightarrow a=1024\)
\(\Rightarrow a=2^{10}\)
Product of the first 21 terms \(=(a^2\times r^{20})^{10} \times ar^{10}\)
\(=a^{21} \times r^{210}\)
\(=(2^{10})^{21} \times (\frac{1}{2})^{210}\)
\(=\frac{2^{210}}{2^{210}}\)
\(=1\)