Self Studies

Sequences and Series Test - 69

Result Self Studies

Sequences and Series Test - 69
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let \(T_ r\) be the \(r\)th term of an AP, for \(r=1,2,3, \ldots\) If for some positive integers \(m , n\), we have \(T_m =\frac{1 }{ n}\) and \(T_n =\frac{1 }{ m}\), then \(T_{m n}\) equals:

    Solution

    Let,

    First term \(=a\)

    Common difference \(=d\)

    Now,

    \(m^{\text{th}}\) term \(=t_m=a+(m-1)d\)

    Since, \(T_{m}=\frac{1 }{ n}\)

    \(\therefore a+(m-1) d=\frac{1}{n}\)...(1)

    Now,

    \(n^{\text{th}}\) term \(=t_n=a+(n-1)d\)

    Since, \(T_{n}=\frac{1 }{ m}\)

    \(\therefore a+(n-1) d=\frac{1 }{ m} \)...(2)

    Subtracting equation (2) from (1), we get

    \(( m -1) d -( n -1) d =\frac{1 }{ n} -\frac{1 }{ m} \)

    \(\Rightarrow( m - n ) d =\frac{( m - n ) }{ mn} \)

    \(\Rightarrow d =\frac{1 }{ mn}\)

    From equation (1), we get

    \(a+\frac{(m-1) }{m n}=\frac{1 }{ n} \)

    \(\Rightarrow a=\frac{1 }{ n}-\frac{(m-1) }{m n }\)

    \(\Rightarrow a=\frac{\{m-(m-1)\} }{ m n} \)

    \(\Rightarrow a=\frac{\{m-m+1)\} }{ m n} \)

    \(\Rightarrow a=\frac{1 }{ m n}\)

    Now, for \(mn^{\text{th}}\) term

    \(T_{m n}=\frac{1 }{ m n}+(m n-1)\frac{1}{ m n}\)

    \(\Rightarrow T_{m n}=\frac{1 }{ m n}+1-\frac{1 }{ m n}\)

    \(\Rightarrow T_{m n}=1\)

  • Question 2
    1 / -0

    If the first term minus the third term of a GP is 768 and the third term minus the seventh term of the same GP is 240, then what is the product of the first 21 terms?

    Solution

    Let,

    First term \(= a\)

    Common ratio \(= r\)

    Given,

    \(a-a r^{2}=768\)

    \(\Rightarrow a\left(1-r^{2}\right)=768\)...(1)

    \(a r^{2}-a r^{6}=240\)

    \(\Rightarrow a r^{2}\left(1-r^{4}\right)=240\)...(2)

    Dividing equation (2) by (1), we get

    \(\frac{a r^{2}\left(1-r^{4}\right)}{a\left(1-r^{2}\right)}=\frac{240 }{768}\)

    \(\Rightarrow \frac{[a r^{2}\left(1-r^{2}) (1+r^2)\right)}{a\left(1-r^{2}\right)}=\frac{240 }{768}\)

    \(\Rightarrow r^2(1+r^2)=\frac{5}{16} \)

    \(\Rightarrow r^2+r^4=\frac{5}{16} \)

    \(\Rightarrow 16r^2+16r^4=5\)

    \(\Rightarrow 16r^4+16r^2-5=0\)

    Using Sridharacharaya formula, we get

    \(r^2=\frac{-16\pm\sqrt{(16)^2-4 \times 16 \times-5}}{2\times 16}\)

    \(\Rightarrow r^2=\frac{-16\pm\sqrt{256+320}}{32}\)

    \(\Rightarrow r^2=\frac{-16\pm\sqrt{576}}{32}\)

    \(\Rightarrow r^2=\frac{-16\pm24}{32}\)

    \(\Rightarrow r^2=\frac{-16+24}{32}\) or \(r^2=\frac{-16-24}{32}\)

    \(\Rightarrow r^2=\frac{8}{32}\) or \(r^2=\frac{-40}{32}\)

    \(\Rightarrow r^2=\frac{1}{4}\) or \(r^2=\frac{-5}{4}\)

    \(\Rightarrow r=\pm \frac{1}{2}\) or \(r=\pm \frac{\sqrt{5}}{2}\)

    So, \(r=\frac{1}{2}, \frac{-1}{2}\) or \(r= \frac{\sqrt{5}}{2},\frac{\sqrt{-5}}{2}\)

    Considering only the real values of \(r\), from equation (1) we get

    \(a(1- \frac{1}{4})=768\)

    \(\Rightarrow a\times \frac{3}{4}=768\)

    \(\Rightarrow a=\frac{768\times 4}{3}\)

    \(\Rightarrow a=1024\)

    \(\Rightarrow a=2^{10}\)

    Product of the first 21 terms \(=(a^2\times r^{20})^{10} \times ar^{10}\)

    \(=a^{21} \times r^{210}\)

    \(=(2^{10})^{21} \times (\frac{1}{2})^{210}\)

    \(=\frac{2^{210}}{2^{210}}\)

    \(=1\)

  • Question 3
    1 / -0

    If the sum of three numbers in A.P is 24 and their product is 440, find the numbers.

    Solution

    Let the three numbers in A.P. be \(a-d, a\), and \(a+d\).

    Given: the sum of three numbers in A.P. is 24

    \( \Rightarrow( a - d )+ a +( a + d )=24 \)

    \( \Rightarrow 3 a =24 \)

    \( \Rightarrow a =8\)

    Also, given: the product of three numbers in A.P. is 440 .

    \(\Rightarrow(a-d)(a)(a+d)=440\)

    Put \(a =8\)

    \( \Rightarrow(8-d)(8)(8+d)=440 \)

    \( \Rightarrow(8-d)(8+d)=55 \)

    \( \Rightarrow 64-d^2=55 \)

    \( \Rightarrow d^2=9 \)

    \( \Rightarrow d= \pm 3\)

    Therefore, when d = 3, the numbers are 5, 8, and 11 and when d = –3, the numbers are 11, 8, and 5.
    So, the three numbers are 5, 8, and 11.

  • Question 4
    1 / -0

    If a, b, c are in AP then (ac)2 equals to:

    Solution

    Given,

    a, b, c are in AP.

    First term \(=t _{1}= a\)

    Second term \(=t _{2}= a + d = b\)

    Third term \(=t _{3}= a +2 d = c\)

    Now,

    \(a+c=a+(a+2 d)=2 a+2 d\)

    \(\Rightarrow a+c=2(a+d)\)

    \(\Rightarrow a+c=2 b\)

    Squaring both sides, we get

    \((a+c)^2=2b\)

    \(\Rightarrow a ^{2}+ c ^{2}+2 ac =4 b ^{2}\)

    \(\Rightarrow 2 ac =4 b ^{2}- a ^{2}- c ^{2}\)

    \(\Rightarrow ac =\frac{4 b ^{2}- a ^{2}- c ^{2}}{2}\)

    \(\Rightarrow ac =2 b ^{2}-\frac{a ^{2}+ c ^{2}}{2}\)

    Squaring both sides, we get

    \((ac)^{2}=\left(2 b ^{2}-\frac{\left( a ^{2}+ c ^{2}\right)}{2}\right)^{2}\)

  • Question 5
    1 / -0

    The middle term of A.P. 5, 12, 19, ..., 215 is:

    Solution

    The given AP series is \(5,12,19, \ldots, 215\)

    First term \((a)=5\)

    Common differenece \((d)=12-5=7\)

    \(n^{\text {th }}\) term \(=a_{n}=215\)

    As we know,

    \(n^{\text {th }}\) term is given by,

    \(a_{n}=a+(n-1) d\)

    \(\therefore 215=5+(n-1) \times 7\)

    \(\Rightarrow 210=(n-1) \times 7 \)

    \(\Rightarrow n-1=30 \)

    = 31

    Here, \(n\) is an odd number.

    So, the middle term of the given AP will be \(\left(\frac{n+1}{2}\right)^{\text {th }}\) term.

    \(\therefore\) Middle term \(=\left(\frac{ n +1}{2}\right)^{\text{th}}\) term

    \(=\left(\frac{31+1}{2}\right)^{\text{th} }\) term

    \(=16^{\text {th}}\) term

    Now,

    \(a_{16}=a+15 d\)

    \(=5+15 \times 7\)

    \(=5+105\)

    \(=110\)

    So, the middle of the given AP series is \(110\).

  • Question 6
    1 / -0

    If \(y=x+x^{2}+x^{3}+\ldots\) up to infinite terms where \(x<1\), then which one of the following is correct?

    Solution

    As we know,

    Standard infinite geometric series is given by: \(a, a r, a r^{2}, a r^{3}, \ldots \ldots, a r^{n-1}, \ldots\) up to infinite terms

    Sum of infinite terms of Geometric Progression (GP) is given by:

    \(s _{ n }=\frac{ a }{1- r }\)

    Given,

    \(y=x+x^{2}+x^{3}+\ldots \ldots\) up to infinite terms.

    Comparing it with standard infinite GP series, we get

    \(a = x\) and \(r = x\)

    As we know,

    Sum of infinite terms of geometric progression is given by:

    \(s _{ n }=\frac{ a }{1- r }\)

    \(\therefore s _{ n }=\left(\frac{ x }{1- x }\right) \)

    \(\Rightarrow y =\left(\frac{ x }{1- x }\right) \)

    \(\Rightarrow y (1- x )= x \)

    \(\Rightarrow y - xy = x \)

    \(\Rightarrow y = x + xy \)

    \(\Rightarrow y = x (1+ y ) \)

    \(\Rightarrow x=\left(\frac{y}{1+y}\right)\)

  • Question 7
    1 / -0

    Three numbers form an increasing GP. If the middle term is doubled, then the new numbers are in AP. The common ratio of GP is:

    Solution

    Given that if middle term in the given GP is doubled then the new numbers will be in AP.

    Let the three terms in GP be \(a, a r, a r^{2}\).

    The middle term \(=a r\).

    According to the statement given in the question,

    \( 2(2 a r)=a+a r^{2}\)

    \(\Rightarrow 4 a r=a\left(1+r^{2}\right) \)

    \(\Rightarrow 4 r=1+r^{2} \)

    \(\Rightarrow r^{2}-4 r+1=0\)...(1)

    The above equation is a quadratic equation in terms of \(r\).

    Comparing the equation (1) with \(a x^{2}+b x+c=0\), we get

    \(a=1, b=-4, c=1\)

    The solution of a quadratic equation is given by,

    \( x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)

    Therefore substituting the values of \(a, b, c\) in above equation will give the value of \(r\) (common ratio).

    \( r=\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \times 1 \times 1}}{2(1)} \)

    \(\Rightarrow r=\frac{4 \pm \sqrt{16-4}}{2} \)

    \(\Rightarrow r=\frac{4 \pm 2 \sqrt{3}}{2} \)

    \(\Rightarrow r=2 \pm \sqrt{3} \)

    \(\Rightarrow r=2+\sqrt{3}\)

    The value of \(r\) is \(2+\sqrt{3}\), the negative value is neglected because the GP is increasing and \(2-\sqrt{3}<1\).

  • Question 8
    1 / -0

    The sum of n terms of two AP's are in the ratio of  (3n + 8) : (7n + 15). Find the ratio of their 12th terms.

    Solution

    Let us consider two AP's having first term \(a _{1}\) and \(a _{2}\) and the common difference are \(d _{1}\) and \(d _{2}\) respectively.

    According to the question,

    \(\frac{ S _{1}}{ S _{2}}=\frac{3 n +8}{7 n +15} \)

    As we know,

    \(S_n=\frac{n}{2}[2a+(n-1) \times d]\)

    \(\therefore \frac{\left.\frac{ n }{2}\left[2 a _{1}+( n -1) d _{1}\right)\right]}{\left.\frac{ n }{2}\left[2 a _{2}+( n -1) d _{2}\right)\right]}=\frac{3 n +8}{7 n +15} \)

    \(\Rightarrow \frac{\left.\left[ a _{1}+\left(\frac{ n -1}{2}\right) d _{1}\right)\right]}{\left[ a _{2}+\left(\frac{ n -1}{2}\right) d _{2}\right]}=\frac{3 n +8}{7 n +15} \)...(1)

    As we know,

    \(n^{\text{th}}\) term of AP \((a_n)=a+(n-1) \times d\)

    So the ratio of \(12^{\text {th }}\) term of first AP and second AP \(=\frac{ a _{1}+(12-1) d _{1}}{ a _{2}+(12-1) d _{2}}\)

    \(=\frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}\)...(2)

    From (1) and (2), we can write

    \(\frac{ n -1}{2}=11\)

    \(\Rightarrow n-1=22\)

    \(\Rightarrow n=23\)

    Putting \(n = 23\) in equation (1), we get

    \(\frac{\left.\left[ a _{1}+\left(\frac{23 -1}{2}\right) d _{1}\right)\right]}{\left[ a _{2}+\left(\frac{ 23 -1}{2}\right) d _{2}\right]}=\frac{3 \times 23 +8}{7 \times 23 +15} \)

    \(\Rightarrow \frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}=\frac{69+8}{161+15}\)

    \(\Rightarrow \frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}=\frac{77}{176}\)

    \(\Rightarrow \frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}=\frac{7}{16}\)

    \(\Rightarrow \frac{12^{\text {th }} \text { term of first AP}}{12^{\text {th }} \text {term of second AP}}=\frac{7}{16}\)

    So, the ratio of \(12^{\text {th }}\) term of first AP and second AP is \(7:16\).

  • Question 9
    1 / -0

    If the arithmetic mean and the geometric mean of two numbers are 13 and 12 respectively, then the two numbers are:

    Solution

    As we know,

    Arithmetic mean \((A)=\frac{a+b}{2}\)

    Geometric mean \((G)=\sqrt{a b}\)

    Let the numbers be \(a\) and \(b\).

    Given,

    The arithmetic mean of two numbers \(=13\)

    \(\therefore \frac{a+b}{2}=13\)

    \(\Rightarrow a+b=26\)...(1)

    The geometric mean of two numbers \(=12\)

    \(\therefore \sqrt{a b}=12\)

    Squaring both sides, we get

    \( a b=144 \)

    \(\Rightarrow b=\frac{144 }{ a}\)

    Putting the value of \(b\) in equation (1), we get

    \(a+\frac{144 }{ a}=26 \)

    \(\Rightarrow a^{2}-26 a+144=0\)

    \(\Rightarrow(a-8)(a-18)=0 \)

    \(\therefore a=8\) or \(18\)

    So, \(b=26-8=18\) or

    \(b= 26-18=8\)

    Therefore, the number are \(8\) and \(18\).

  • Question 10
    1 / -0

    The third term of a geometric progression (GP) is 2. The product of the first 5 terms is:

    Solution

    As we know,

    The general term of an geometric progression with first term \(a\) and common ratio \(r\) is given by:

    \(T _{ n }= ar ^{ n -1}\)

    Given,

    The third term of a geometric progression (GP) \(=2\)

    So, Third term \(=T _{3}= ar ^{3-1}\)

    \(\Rightarrow ar ^{2}=2\)

    Now, the product of first five terms \(=a \times ar \times ar^2 \times ar^3 \times ar^4\)

    \(=a ^2r^{10}\)

    \(=(ar^2)^5\)

    \(=(2)^5\)

    \(=32\)

    So, the product of the first 5 terms is \(32\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now