\(\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1\)
Or, \(b x\cos \theta+a y \sin \theta-a b=0\).......(1)
Length of the perpendicular from point \(\left(\sqrt{a^{2}-b^{2}} ; 0\right)\) to line (1) is
\(P_{1}=\frac{|b \cos \theta\left(\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b \mid}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\mid b \cos \theta \sqrt{a^{2}-b^{2}}-a b|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\)....(2)
Length of the perpendicular from point \(\left(-\sqrt{a^{2}-b^{2}}, 0\right)\) to line \((2)\) is
\(P_{2}=\frac{|b \cos \theta\left(-\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{|b \cos \theta (-\sqrt{a^{2}-b^{2}})-a b \mid}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\)
\(P_{2}=\frac{|b \cos \theta\left(-\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{|b \cos \theta \sqrt{a^{2}-b^{2}}+a b \mid}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\)....(3)
On multiplying equations (2) and (3) we get,
\(P_{1} P_{2}=\frac{|(b \cos \theta \sqrt{a^{2}-b^{2}}-a b)(b \cos \theta \sqrt{a^{2}-b^{2}}+a b) \mid}{\left(\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\right)^{2}}\)
\(=\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right)\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right)\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}\)
\(=\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}\right)^{2}-(a b)^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}\)\(\quad(\because (a+b)(a-b) = a^{2} -b^{2})\)
\(=\frac{\left|b^{2} \cos ^{2} \theta\left(a^{2}-b^{2}\right)-a^{2} b^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}\)
\(=\frac{\left|a^{2} b^{2} \cos ^{2} \theta-b^{4} \cos ^{2} \theta-a^{2} b^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\)
\(=\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\)
\(=\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2} \sin ^{2} \theta-a^{2} \cos ^{2} \theta\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\) \(\quad\quad\because[\sin ^{2} \theta+\cos ^{2} \theta=1]\)
\(=\frac{b^{2}\left|-\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\)
\(=\frac{b^{2}\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}\)
\(=b^{2}\)