Given,
\(\cot \left(22 \frac{1}{2}^{\circ}\right)\)
We know that, \(\cot x=\frac{\cos x}{\sin x}\)
\(\Rightarrow \cot \left(22 \frac{1}{2}^{\circ}\right)=\frac{\cos \left(22 \frac{1^{\circ}}{2}\right)}{\sin \left(22 \frac{1}{2}^{\circ}\right)}\)
\(\Rightarrow \sin \left(\frac{45^{\circ}}{2}\right)=\pm \sqrt{\frac{1-\cos \left(45^{\circ}\right)}{2}}\)\(\quad \quad (\because \sin \frac{A}{2}=\pm \sqrt{\frac{1-\cos A}{2}})\)
As we know that, \(0^{\circ}<\frac{\mathrm{A}}{2}<90^{\circ}\) where all trigonometric ratios are positive.
\(\Rightarrow \sin \left(\frac{45^{\circ}}{2}\right)=\sqrt{\frac{\sqrt{2}-1}{2 \sqrt{2}}}\)......(i)
\(\Rightarrow \cos \left(\frac{45^{\circ}}{2}\right)=\pm \sqrt{\frac{1+\cos \left(45^{\circ}\right)}{2}}\)\(\quad \quad (\because \cos \frac{A}{2}=\pm \sqrt{\frac{1+\cos A}{2}})\).....(ii)
As we know that, \(0^{\circ}<\frac{\mathrm{A}}{2}<90^{\circ}\) where all trigonometric ratio's are positive.
\(\Rightarrow \cos \left(\frac{45^{\circ}}{2}\right)=\sqrt{\frac{\sqrt{2}+1}{2 \sqrt{2}}}\)
So, from equation (i) and (ii), we get
\(\Rightarrow \cot \left(22 \frac{1}{2}^{\circ}\right)=\frac{\sqrt{\frac{\sqrt{2}+1}{2 \sqrt{2}}}}{\sqrt{\frac{\sqrt{2}-1}{2 \sqrt{2}}}}\)
\(=1+\sqrt{2}\)
\(\Rightarrow \sqrt{\frac{\sqrt{2}+1}{\sqrt{2}-1}}\)
Rationalization above the equation
\(\Rightarrow \sqrt{\frac{\sqrt{2}+1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}}\)
\(\Rightarrow \sqrt{\frac{(\sqrt{2}+1)^{2}}{(\sqrt{2})^{2}-(1)^{2}}} \quad\left(\because a^{2}-b^{2}=(a+b)(a-b)\right.)\)
\(\Rightarrow \sqrt{\frac{(\sqrt{2}+1)^{2}}{2-1}}\)
\(=1+\sqrt{2}\)