Self Studies

Trigonometric Functions Test 37

Result Self Studies

Trigonometric Functions Test 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What is the value of \(\sin \left(-1125^{\circ}\right)\)?

    Solution

    Given,

    \(\sin \left(-1125^{\circ}\right)\)

    \(=-\sin \left(1125^{\circ}\right)\) \(\quad\quad (\because\) \(\sin (-x)=-\sin x)\)

    \(=-\sin \left(360^{\circ} \times 3+45^{\circ}\right)\)\(\quad\quad(\because\) \(\sin (2 n \pi+x)=\sin x)\)

    \(=-\sin 45^{\circ}\)

    \(=\frac{-1}{\sqrt{2}}\)

    \(\therefore\) \(\sin \left(-1125^{\circ}\right)\) \(=\frac{-1}{\sqrt{2}}\).

  • Question 2
    1 / -0

    If \(\sin x+\sin 3 x+\sin 5 x=0\), then the solution is:

    Solution

    Given,

    \(\sin x+\sin 3 x+\sin 5 x=0\)

    \(\Rightarrow(\sin 5 \mathrm{x}+\sin \mathrm{x})+\sin 3 \mathrm{x}=0\)

    \(\Rightarrow 2 \sin 3 x \cos 2 x+\sin 3 x=0\) \(\quad (\because \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2})\)

    \(\Rightarrow \sin 3 x(2 \cos 2 x+1)=0\)

    \(\sin 3 \mathrm{x}=0\) or \(2 \cos 2 \mathrm{x}+1=0\)

    \(\sin 3 \mathrm{x}=0\) or, \(\cos 2 \mathrm{x}=-\frac{1}{2}\)

    Now, \(\sin 3 \mathrm{x}=0 \Longrightarrow 3 \mathrm{x}=\mathrm{n} \pi \Longrightarrow \mathrm{x}=\frac{\mathrm{n} \pi}{3}, \mathrm{n} \in \mathrm{Z}\)

    And, \(\cos 2 \mathrm{x}=-\frac{1}{2}\)

    \(\cos 2 \mathrm{x}=\cos \frac{2 \pi}{3}\)

    \(2 \mathrm{x}=2 \mathrm{~m} \pi \pm \frac{2 \pi}{3}, \mathrm{~m} \in \mathrm{Z}\)

    \(\mathrm{x}=\mathrm{m} \pi \pm \frac{\pi}{3}, \mathrm{~m} \in \mathrm{Z}\)

    \(\therefore\) The general solution of the given equation is : \(\mathrm{x}=\frac{\mathrm{n} \pi}{3}\) or, \(\mathrm{x}=\mathrm{m} \pi \pm \frac{\pi}{3}\), where \(\mathrm{m}, \mathrm{n} \in \mathrm{Z}\).

  • Question 3
    1 / -0

    The value of \(\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}\) is:

    Solution

    Given,

    \(\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}\)...(i)

    We know that,

    \(\operatorname{sin}(A+B)=(\operatorname{sin} A \times \cos B+\operatorname{cos} A \times \operatorname{sin} B)\)....(ii)

    Comparing equation (i) with euation (ii) we get,

    \(A=25^{\circ}\)

    \(B=65^{\circ}\)

    \(\operatorname{sin}\left(25^{\circ}+65^{\circ}\right)\)

    \(\Rightarrow \operatorname{sin} 90^{\circ}=1\)

  • Question 4
    1 / -0

    Which one of the following is true for \(0^{\circ}<\theta<90^{\circ}\)?

    Solution

    Put, \(\theta=60^{\circ}\)

    \(\Rightarrow \cos \theta>\cos ^{2} \theta\)

    \(\Rightarrow \cos 60^{\circ}>\cos ^{2} 60^{\circ}\)

    \(\Rightarrow \frac{1}{2}>\frac{1}{4}\) \(\cos \theta>\cos ^{2} \theta\)

  • Question 5
    1 / -0

    If \(\sin x+\operatorname{sin}^{2} x=1\), then \(\cos ^{4} x+\cos ^{2} x\) is equal to:

    Solution

    Given,

    \(\sin x+\operatorname{sin}^{2} x=1\)

    \(\Rightarrow \sin x=1-\sin ^{2} x\) \(\quad\quad (\because 1 - \sin ^{2} \theta =\cos ^{2} \theta)\)

    \(\Rightarrow \sin x=\cos ^{2} x \quad\) ......(i)

    Sqauring both in equation (i) we get,

    \(\sin ^{2} x=\cos ^{4} x\)

    \(\Rightarrow 1-\cos ^{2} x=\cos ^{4} x \) \(\quad\quad (\because \sin ^{2} \theta =1 - \cos ^{2} \theta)\)

    \(\Rightarrow \cos ^{4} x+\cos ^{2} x=1\)

  • Question 6
    1 / -0

    Find the value of \(\cos \left(3015^{\circ}\right)\):

    Solution

    Given,

    \(\cos \left(3015^{\circ}\right)\)

    \(=\cos \left(360^{\circ} \times 8^{\circ}+135^{\circ}\right)\)\(\quad\quad(\because\cos (2 n \pi \pm \theta)=\cos \theta)\)

    \(=\cos \left(135^{\circ}\right)\)

    \(=\cos \left(90^{\circ}+45^{\circ}\right) \)\(\quad\quad(\because\cos (90+\theta)=-\sin \theta)\)

    \(=-\sin 45^{\circ}\)

    \(=\frac{-1}{\sqrt{2}}\)

  • Question 7
    1 / -0

    Evaluate the following expression: \(\sin x+\sin (x-\pi)+\sin (x+\pi)\)

    Solution

    Given,

    \(\sin x+\sin (x-\pi)+\sin (x+\pi)\)

    We know that,

    \(\sin (\pi-x)=\sin x\)

    \(\sin (\pi+x)=-\sin x\)

    \(\sin (-x)=-\sin x \)

    Therefore,

    \(=\sin x-\sin (\pi-x)-\sin (\pi+x)\)

    \(=\sin x-\sin (\pi-x)-\sin x\)

    \(=-\sin (\pi-x)\)

    \(=-\sin x\)

  • Question 8
    1 / -0

    Which of the following equals \(1+\cot ^{2} \theta ?\)

    Solution

    Given,

    \(1+\cot ^{2} \theta\)

    \(=1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\)\(\quad\quad(\because\cot\theta =\frac{\cos\theta}{\\sin\theta})\)

    \(=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta}\) \(\quad\quad(\because\sin ^{2} \theta+\cos ^{2} \theta=1)\)

    \(=\frac{1}{\sin ^{2} \theta}\)

    \(=\operatorname{cosec}^{2} \theta\)

  • Question 9
    1 / -0

    Value of \(\cos \left(-1230^{\circ}\right) \times \cot \left(-315^{\circ}\right)\) is:

    Solution

    Given,

    \(\cos \left(-1230^{\circ}\right) \times \cot \left(-315^{\circ}\right)\)

    \(\cos \left(-1230^{\circ}\right)=\cos \left(1230^{\circ}\right)\)\(\quad\quad(\because \cos (-\theta)=\cos \theta)\)

    \(=\cos \left(3 \times 360^{\circ}+150\right)\)\(\quad\quad(\because\cot (2 n \pi-\theta)=-\cot (\theta))\)

    \(=\cos \left(150^{\circ}\right)\)

    \(=\cos \left(180^{\circ}-30^{\circ}\right)\)\(=-\cos 30^{\circ} \quad(\because \cos (\pi-\theta)=-\cos (\theta))\)

    \(=\frac{-\sqrt{3}}{2}\)

    Now,

    \(\cot \left(-315^{\circ}\right)=-\cot \left(315^{\circ}\right) \quad(\because \cot (-\theta)=-\cot (\theta))\)

    \(=-\cot \left(360^{\circ}-45^{\circ}\right) \)

    \(=\cot 45^{\circ} \quad(\because \cot (2 n \pi-\theta)=-\cot (\theta))\)

    \(=1\)

    \(\cos \left(-1230^{\circ}\right) \times \cot \left(-315^{\circ}\right)=\frac{-\sqrt{3}}{2}\)

    \(=1 × \frac{-\sqrt{3}}{2}\)

  • Question 10
    1 / -0

    \(\frac{\sin 7 x+6 \sin 5 x+17 \sin 3 x+12 \sin x}{\sin 6 x+5 \sin 4 x+12 \sin 2 x}\) equals:

    Solution

    Given,

    \(\frac{\sin 7 x+6 \sin 5 x+17 \sin 3 x+12 \sin x}{\sin 6 x+5 \sin 4 x+12 \sin 2 x}\)

    \(=\frac{\sin 7 \mathrm{x}+\sin 5 \mathrm{x}+5 \sin 5 \mathrm{x}+5 \sin 3 \mathrm{x}+12 \sin 3 \mathrm{x}+12 \sin \mathrm{x}}{\sin 6 \mathrm{x}+5 \sin 4 \mathrm{x}+12 \sin 2 \mathrm{x}}\)

    By using, \(\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\)

    Therefore,

    \(=\frac{(2 \sin(\frac{7x+5x}{2}) \cos (\frac{7x-5x}{2})+5×(2\sin(\frac{5x+3x}{2})\cos (\frac{5x-3x}{2}))+12×(2\sin(\frac{3x+x}{2}) \cos(\frac{3x-x}{2}))}{(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}\)

    \(=\frac{2 \sin 6 x \cos x+10 \sin 4 x \cos x+24 \sin 2 x \cos x}{(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}\)

    \(=\frac{2 \cos x(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}{(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}\)

    \(=2 \cos x\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now