Self Studies

Trigonometric Functions Test 38

Result Self Studies

Trigonometric Functions Test 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of \(\cos ^{2} 15^{\circ}-\cos ^{2} 75^{\circ}\) is:

    Solution

    Given,

    \(\cos ^{2} 15^{\circ}-\cos ^{2} 75^{\circ}\)

    \(=\cos ^{2} 15^{\circ}-\cos ^{2}\left(90^{\circ}-15^{\circ}\right)\)\(\quad\quad\) \((\because \cos (90^{\circ}-\theta)=\sin \theta)\)

    \(=\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}\)

    \(=\cos \left(2 \times 15^{\circ}\right) \quad\left(\because \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta\right)\)

    \(=\cos 30^{\circ}\)

    \(=\frac{\sqrt{3}}{2}\)

  • Question 2
    1 / -0

    Find the general solution of the equation \(\sin 2 x+\cos x=0\)

    Solution

    The given equation can be solved as:

    \( \sin 2 x+\cos x=0 \)

    \( \Rightarrow 2 \sin x \cos x+\cos x=0 \)

    \( \Rightarrow \cos x(2 \sin x+1)=0 \)

    \( \Rightarrow \cos x=0 \) (or) \((2 \sin x+1)=0 \)

    i.e \(\cos x=0 \) (or)\( \sin x=-\frac{1 }{ 2} \)

    \( \Rightarrow \cos x=\cos \frac{\pi }{ 2} \) OR \(\sin x=\sin (-\frac{\pi }{ 6}) \)

    \( \Rightarrow x=2 n \pi+-\frac{\pi }{ 2} \) OR \( x=n \pi+(-1)^n \times(-\frac{\pi }{ 6})\)

  • Question 3
    1 / -0

    Evaluate the expression: \(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=?\)

    Solution

    Given, \(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\left.\frac{(1+\cos \theta) \times(1+\cos \theta))}{(1-\cos \theta) \times(1+ \cos \theta) }\right)} \quad\) (By rationalization)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\frac{(1+\cos \theta)^{2}}{1-\cos ^{2} \theta}}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}\)\(\quad \left(\because 1-\cos ^{2} x=\sin ^{2} x\right)\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\left(\frac{1+\cos \theta}{\sin  \theta}\right)^{2}}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin  \theta}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\) = \(\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\) = \(\operatorname{cosec} \theta+\cot \theta\) \(\quad\quad (\because\operatorname{cosec} x=\frac{1}{\sin x},\cot x=\frac{\cos x}{\sin x})\)

  • Question 4
    1 / -0

    If \(\operatorname{cosec} \theta-\cot \theta=\sqrt{3}\), then the value of \((\tan \theta+\sin \theta)\) is:

    Solution

    Given,

    \(\operatorname{cosec} \theta-\cot \theta=\sqrt{3} \ldots\) (i)

    We know the trigonometric identity, \(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\)

    \((\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta)=1\)

    Using equation (i) we get,

    \(\Rightarrow \sqrt{3}(\operatorname{cosec} \theta+\cot \theta)=1\)

    \(\Rightarrow \operatorname{cosec} \theta+\cot \theta=\frac{1}{\sqrt{3}}\)...(ii)

    Adding (i) and (ii) we get,

    \(\operatorname{cosec} \theta-\cot \theta+\operatorname{cosec} \theta+\cot \theta=\sqrt{3}+\frac{1}{\sqrt{3}} \)

    \(\Rightarrow 2 \operatorname{cosec} \theta=\sqrt{3}+\frac{1}{\sqrt{3}}\)

    \(\Rightarrow \operatorname{cosec} \theta=\frac{2}{\sqrt{3}}\)

    \(\Rightarrow \theta=60^{\circ}\) or \(\theta=120^{\circ}\)

    Substitute the value of \(\theta=60^{\circ}\) in equation (i),

    \(\operatorname{cosec} 60^{\circ}-\cot 60^{\circ}=\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}\)

    \(=\frac{1}{\sqrt{3}} \neq \sqrt{3}\)

    \(\Rightarrow \theta=60^{\circ}\) not satisfying the original equation.

    Now, Substitute the value of \(\theta=120^{\circ}\) in equation (i),

    \(\operatorname{cosec} 120^{\circ}-\cot 120^{\circ}=\frac{2}{\sqrt{3}}-\frac{-1}{\sqrt{3}}\)

    \(=\frac{3}{\sqrt{3}}\)

    \(=\sqrt{3}\)

    \(\Rightarrow \theta=120^{\circ}\) satisfying the original equation.

    Now,

    \(\tan \theta+\sin \theta=\tan 120^{\circ}+\sin 120^{\circ}\)

    \(=-\sqrt{3}+\frac{\sqrt{3}}{2}\)

    \(=\frac{-2 \sqrt{3}+\sqrt{3}}{2}\)

    \(=-\frac{\sqrt{3}}{2}\)

  • Question 5
    1 / -0

    The expression \(\frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}\) is equal to:

    Solution

    Given,

    \(\frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}\)

    We know that,

    \(\operatorname{cosec}^{2} x=1+\cot ^{2} x\)

    Therefore,

    \(\frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cot x+\operatorname{cosec} x-\operatorname{cosec}^{2} x-\cot ^{2} x}{\cot x-\operatorname{cosec} x+\operatorname{cosec}^{2} x-\cot ^{2} x}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cot x+\operatorname{cosec} x-\operatorname{cosec}^{2} x-\cot ^{2} x}{\cot x-\operatorname{cosec} x+1}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cot x+\operatorname{cosec} x-(\operatorname{cosec} x-\cot x)(\operatorname{cosec} x+\cot x)}{\cot x-\operatorname{cosec} x+1}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{(\cot x+\operatorname{cosec} x)(\operatorname{cotx}-\operatorname{cosec} x+1)}{(\cot x-\operatorname{cosec} x+1)}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=(\cot x+\operatorname{cosec} x)\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cos x+1}{\sin x}\)

  • Question 6
    1 / -0

    If \(2 \sin ^{2} A+3 \cos ^{2} A=2\), find the value of \((\tan A-\cot A)^{2}\) where, \(\sin A>0\)

    Solution

    Given,

    \(2 \sin ^{2} \mathrm{~A}+3 \cos ^{2} \mathrm{~A}=2\)

    \(\Rightarrow 2 \sin ^{2} A+3\left(1-\sin ^{2} A\right)=2\)\(\quad\quad(\because\cos ^{2} A=1-\sin ^{2} A)\)

    \(\Rightarrow 2 \sin ^{2} A+ 3-3\sin ^{2} A=2\)

    \(\Rightarrow -\sin ^{2} A=-1\)

    \(\Rightarrow \sin ^{2} A=1\)

    \(\Rightarrow \sin A=1\)

    \(\Rightarrow \sin A=\sin 90^{\circ}\)

    \(\Rightarrow A=90^{\circ}\)

    Now, we will find

    \((\tan A-\cot A)^{2}=\left(\tan 90^{\circ}-\cot 90^{\circ}\right)^{2}\)

    \(\Rightarrow(\tan A-\cot A)^{2}=(\infty-0)^{2}\)

    \(\Rightarrow(\tan A-\cot A)^{2}=\infty\)

  • Question 7
    1 / -0

    If \(A+B=90^{\circ}\), then what is \(\sqrt{\sin A \sec B-\sin A \cos B}\) equal to ?

    Solution

    Given,

    \(A+B=90^{\circ}\),

    \( \Rightarrow B=90^{\circ}-A\)

    Therefore,

    \(\sqrt{\sin \mathrm{A} \sec \mathrm{B}-\sin \mathrm{A} \cos \mathrm{B}}\)

    \(=\sqrt{\sin \mathrm{A} \sec (90^{\circ}-\mathrm{A})-\sin \mathrm{A} \cos (90^{\circ}-\mathrm{A})}\)\(\quad\quad(\because B=90^{\circ}-A)\)

    \(=\sqrt{\sin \mathrm{A} \operatorname{cosec} \mathrm{A}-\sin \mathrm{A} \sin \mathrm{A}}\) \(\quad\quad(\because \sec \left(90^{\circ}-\theta\right)=\operatorname{cosec}\theta\) and \(\cos \left(90^{\circ}-\theta\right)=\sin \theta, \operatorname{cosec} \theta =\frac{1}{\sin \theta})\)

    \(=\sqrt{1-\sin ^{2} \mathrm{~A}}\)

    \(=\sqrt{\cos ^{2} \mathrm{~A}}\)\(\quad\quad(\because 1-\sin ^{2}\mathrm{A}=\cos ^{2}\mathrm{A} )\)

    = \(\cos \mathrm{A}\)

  • Question 8
    1 / -0

    Evaluate:

    \(\frac{\cos x-\sin x+1}{\cos x+\sin x-1}\)

    Solution

    Given,

    \(\frac{\cos x-\sin x+1}{\cos x+\sin x-1}\)

    Assuming this as equation (i)

    \(\frac{\cos x-\sin x+1}{\cos x+\sin x-1}\)......(i)

    Now rationalizing eqution (i)

    \(\frac{\cos x-(\sin x-1)}{\cos x+(\sin x-1)} \times \frac{\cos x-(\sin x-1)}{\cos x-(\sin x-1)}\)

    \(=\frac{[\cos x-(\sin x-1)]^{2}}{\cos ^{2} x-(\sin x-1)^{2}}\)

    Now using identity \((a- b)^{2}=(a^{2} - 2 a b-b^{2})\) we get,

    \(=\frac{\cos ^{2} x+(\sin x-1)^{2}-2 \cos x(\sin x-1)}{-\left(\sin ^{2} x-2 \sin x+1\right)}\)

    \(=\frac{\cos ^{2} x+\sin ^{2} x-2 \sin x+1-2 \cos x(\sin x-1)}{1-\sin ^{2} x-\left(\sin ^{2} x-2 \sin x+1\right)}\)

    \(\quad\quad(\because \cos ^{2} x+\sin ^{2} x\) = 1 and \(\cos ^{2} x\) = \(1-\sin ^{2} x)\)

    \(=\frac{1-2 \sin x+1-2 \cos x(\sin x-1)}{1-\sin ^{2} x-\left(\sin ^{2} x-2 \sin x+1\right)}\)

    \(=\frac{2-2 \sin x-2 \cos x(\sin x-1)}{1-\sin ^{2} x-\sin ^{2} x+2 \sin x-1}\)

    \(=\frac{2(1-\sin x)+2 \cos x(1-\sin x)}{2 \sin x-2 \sin ^{2} x}\)

    \(=\frac{(1-\sin x)(1+\cos x)}{\sin x(1-\sin x)}\)

    \(=\frac{1+\cos x}{\sin x}\)

    \(=\frac{1}{\sin x}+\frac{\cos x}{\sin x}\)\((\because \operatorname{cosec} x=\frac{1}{\sin x}, \cot x=\frac{\cos x}{\sin x})\)

    \(=\operatorname{cosec} x+\operatorname{cot} x\)

  • Question 9
    1 / -0

    Suppose \(\sin 2 \theta=\cos 3 \theta\), here \(0<\theta<\pi / 2\) then what is the value of \(\cos 2 \theta ?\)

    Solution

    Given,

    \(\sin 2 \theta=\cos 3 \theta, 0<\theta<\pi / 2\)

    As we know that, \(\sin 2 \theta=2 \sin \theta \cos \theta\) and \(\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\)

    \(\Rightarrow 2 \sin \theta \cos \theta=4 \cos ^{3} \theta-3 \cos \theta \)

    \(\Rightarrow 2 \sin \theta=4 \cos ^{2} \theta-3\)

    \(\Rightarrow 2 \sin \theta=4\left(1-\sin ^{2} \theta\right)-3=4-4 \sin ^{2} \theta-3\)

    \(\Rightarrow 4 \sin ^{2} \theta+2 \sin \theta-1=0\)

    Comparing the above equation with quadratic equation \(a x^{2}+b x+c=0, a=4, b=2\) and \(c=-1\)

    Now substituting the values in the quadratic formula \(\frac{x=\left(-b \pm \sqrt{b}^{2}-4 a c\right) }{2 a}\) we get,

    \(\sin \theta=\frac{-2 \pm \sqrt{-2^{2}-4(4)(-1)}}{2(4)}\)

    \(=\frac{-2 \pm \sqrt{4+16}}{8}\)

    \(=\frac{-2 \pm \sqrt{20}}{8}\)

    \(=\frac{-1 \pm \sqrt{5}}{4}\)

    Thus, \(\sin \theta=\frac{-1 \pm \sqrt{5}}{4}\)

    Since, \(0<\theta<\frac{\pi}{ 2} \Rightarrow \theta\) lies between \(0^{\circ}\) to \(90^{\circ} \Rightarrow\) all ratios are positive.

    \(\Rightarrow \sin \theta=\frac{-1+\sqrt{5}}{4}\)

    As we know that, \(\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\)

    \(=1-2 \sin ^{2} \theta\)

    \(\Rightarrow \cos 2 \theta=1-2\left(\frac{-1+\sqrt{5}}{4}\right)^{2}\)

    \(=\frac{1+\sqrt{5}}{4}\)

    \(\therefore\) The the value of \(\cos 2 \theta \) is \(\frac{1+\sqrt{5}}{4}\)

  • Question 10
    1 / -0

    Find the principal solution of the equation \(\tan x=-\frac{1}{\sqrt{3}}\)?

    Solution

    Given,

    \(\tan x=-\frac{1}{\sqrt{3}}\)

    The general solution of the equation \(\tan x=\tan \alpha\) is given by:

    \(x=n \pi+a\), where \(a \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\) and \(n \in Z\)

    As we know that,

    \(\tan \frac{5 \pi}{6}=-\frac{1}{\sqrt{3}}\)

    \(\Rightarrow \tan x=\tan \frac{5 \pi}{6}\)

    As we know that, if \(\tan x=\tan \alpha\) then \(x=n \pi+a\), where \(a \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\) and \(n \in Z\) \(\Rightarrow x=n \pi+(\frac{5 \pi}{6})\) where \(n \in Z\)

    As we know that, if the solutions of a trigonometric equation for which \(0 \leq \mathrm{x}<2 \mathrm{~m}\) are called principal solution.

    So, the principal solutions of the given equation are \(x=\frac{5 \pi}{6}\) and \(\frac{11 \pi}{6}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now