Given,
\(\operatorname{cosec} \theta-\cot \theta=\sqrt{3} \ldots\) (i)
We know the trigonometric identity, \(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\)
\((\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta)=1\)
Using equation (i) we get,
\(\Rightarrow \sqrt{3}(\operatorname{cosec} \theta+\cot \theta)=1\)
\(\Rightarrow \operatorname{cosec} \theta+\cot \theta=\frac{1}{\sqrt{3}}\)...(ii)
Adding (i) and (ii) we get,
\(\operatorname{cosec} \theta-\cot \theta+\operatorname{cosec} \theta+\cot \theta=\sqrt{3}+\frac{1}{\sqrt{3}} \)
\(\Rightarrow 2 \operatorname{cosec} \theta=\sqrt{3}+\frac{1}{\sqrt{3}}\)
\(\Rightarrow \operatorname{cosec} \theta=\frac{2}{\sqrt{3}}\)
\(\Rightarrow \theta=60^{\circ}\) or \(\theta=120^{\circ}\)
Substitute the value of \(\theta=60^{\circ}\) in equation (i),
\(\operatorname{cosec} 60^{\circ}-\cot 60^{\circ}=\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}\)
\(=\frac{1}{\sqrt{3}} \neq \sqrt{3}\)
\(\Rightarrow \theta=60^{\circ}\) not satisfying the original equation.
Now, Substitute the value of \(\theta=120^{\circ}\) in equation (i),
\(\operatorname{cosec} 120^{\circ}-\cot 120^{\circ}=\frac{2}{\sqrt{3}}-\frac{-1}{\sqrt{3}}\)
\(=\frac{3}{\sqrt{3}}\)
\(=\sqrt{3}\)
\(\Rightarrow \theta=120^{\circ}\) satisfying the original equation.
Now,
\(\tan \theta+\sin \theta=\tan 120^{\circ}+\sin 120^{\circ}\)
\(=-\sqrt{3}+\frac{\sqrt{3}}{2}\)
\(=\frac{-2 \sqrt{3}+\sqrt{3}}{2}\)
\(=-\frac{\sqrt{3}}{2}\)