Self Studies

Kinetic Theory Test - 59

Result Self Studies

Kinetic Theory Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Select the correct statement
    Solution

  • Question 2
    1 / -0
    A gas mixture contains 8 moles of oxygen and 2 mole of argon at room temperature T. The total energy of the mixture is 
    Solution

  • Question 3
    1 / -0
    Air is filled at $$60^0$$C in a vessel of open mouth. The vessel is heated to a temperature T so that $$1/4^{th}$$ part of air escapes. The value of T is : 
    Solution

  • Question 4
    1 / -0
    $$'n'$$ moles of an ideal gas undergoes a process $$A\rightarrow B$$ as shown in the figure. The maximum temperature of the gas during the process will be :

    Solution
    $$\begin{array}{l} y-{ y_{ 1 } }=\dfrac { { { y_{ 2 } }-{ y_{ 1 } } } }{ { { x_{ 2 } }-{ x_{ 1 } } } } \left( { x-{ x_{ 1 } } } \right)  \\ P-{ P_{ 0 } }=\dfrac { { 2{ p_{ 0 } }-{ p_{ 0 } } } }{ { { v_{ 0 } }2{ v_{ 0 } } } } \left( { V-2{ V_{ 0 } } } \right)  \\ =\dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } \left( { V-2{ V_{ 0 } } } \right)  \\ P=\dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } V+3{ p_{ 0 } } \\ PV=\dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } V+3{ p_{ 0 } }V \\ nRT=\dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } V+3{ p_{ 0 } }V \\ T=\dfrac { 1 }{ { nR } } \left( { \dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } { V^{ 2 } }+3{ p_{ 0 } }V } \right)  \\ \dfrac { { dT } }{ { dV } } =0\, \, \left( { for\, \, \max  \, \, \, temperature } \right)  \\ \dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } 2V+3{ p_{ 0 } }=0 \\ \dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } 2V=-3{ p_{ 0 } } \\ V=\dfrac { 3 }{ 2 } { V_{ 0 } }\, \, \, \, \left( { condtion\, \, for\, \, \max  \, \, temperature } \right)  \\ { T_{ \max   } }=\dfrac { 1 }{ { nR } } \left( { \dfrac { { -{ P_{ 0 } } } }{ { { V_{ 0 } } } } \times \dfrac { 9 }{ 4 } V_{ 0 }^{ 2 }+3{ p_{ 0 } }\times \dfrac { 3 }{ 2 } { V_{ 0 } } } \right)  \\ { T_{ \max   } }=\dfrac { 1 }{ { nR } } \left( { -\dfrac { 9 }{ 4 } { P_{ 0 } }{ V_{ 0 } }+\dfrac { 9 }{ 2 } { P_{ 0 } }{ V_{ 0 } } } \right)  \\ =\dfrac { 9 }{ 4 } \dfrac { { { P_{ 0 } }{ V_{ 0 } } } }{ { nR } }  \end{array}$$
  • Question 5
    1 / -0
    Internal energy of $$n_{1}$$ moles of hydrogen at temperature $$150\ K$$ is equal to the internal energy of $$n_{2}$$ moles of helium at temperature $$300\ K$$. The ratio of $$n_{1}/n_{2}$$ is
    Solution
    We have,
    $$u = \dfrac{5}{2} \times {n_1} \times R \times 150 = \dfrac{3}{2} \times {n_2} \times R \times 300$$
    $$ \Rightarrow \dfrac{{{n_1}}}{{{n_2}}} = \dfrac{{900}}{{750}} = \dfrac{6}{5}$$
    $$\therefore$$ Option $$C$$ is correct answer.
  • Question 6
    1 / -0
    The magnetic monment of a diamagnetic atom is 
    Solution

  • Question 7
    1 / -0
    If number of molecules of $${ H }_{ 2 }$$ are doubles  than that of $${ O }_{ 2 }$$, then ratio of kinetic energy of hydrogen to that of oxygen at 300 K is 
    Solution

  • Question 8
    1 / -0
    Find the approximate number of molecules contained in a vessel of volume $$7$$ litres at $$0^oC$$ at $$1.3\times 10^5$$ pascals:
    Solution

  • Question 9
    1 / -0
    Where temperature of a gas, contained in closed vessel is increased by $$5C$$, its pressure increases by $$1%$$.The original temperature of the gas was approx i - mately:- 
    Solution

  • Question 10
    1 / -0
    An ant is walking on the horizontal surface. The number of degree of freedom of ant will be
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now