Self Studies
Selfstudy
Selfstudy

Waves Test - 52

Result Self Studies

Waves Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The displacement of a particle in SHM is $$x =3 sin(20\pi t) +4 cos (20\pi t)$$ cm.Its amplitude of oscillation is
    Solution

    Both the SHM have same frequency ,with an amplitude of $$3$$ and $$4$$, with a phase difference of $$90^0$$

    The maximum value of the equation,
    $$x=3\sin(20\pi t)+4\cos(20\pi t)$$ is 

    $$\sqrt{3^2+4^2}= 5\ cm$$

    Option $$\textbf C$$ is the correct answer
  • Question 2
    1 / -0
    A progressive wave moves with a velocity of $$36m/s$$ in a medium with a frequency of $$200Hz$$. The phase difference between two particles separated by a distance of $$1cm$$ is:
    Solution
    Solution we have, $$ V = 36m/s, f = 200H_{2} $$ and 
    $$ \Delta x = 1cm = 10^{-2}m $$
    we know that,
    $$ v = f\lambda $$
    $$ \Rightarrow \lambda = \dfrac{v}{f} = \dfrac{36}{200} = \dfrac{9}{50}m $$
    Also, $$ \Delta \phi = 2\pi (\dfrac{\Delta x}{\lambda }) $$
    $$ \Rightarrow \Delta \phi = 2\pi \dfrac{(\dfrac{1}{100})}{\dfrac{9}{50}} \Rightarrow \Delta \phi = \dfrac{\pi }{4} $$
    Option - c is correct 

  • Question 3
    1 / -0
    Two identical sinusoidal waves each of amplitude $$5 mm$$ with a phase difference of $$\dfrac{\pi}{2}$$ are travelling in the same direction in a string. The amplitude of the resultant wave (in mm) is:-
    Solution
    Given amplitude = 5mm
    So, sinusoidal wave can be
    taken as $$ A = 5 sin\omega t $$
    Another wave has $$ \dfrac{\pi}{2}$$ phase diff-
    $$ \Rightarrow B = 5 sin(\omega t+\dfrac{\pi}{2})$$
    $$ = 5 cos \omega t $$
    $$ A+B = 5(sin\omega t + cos \omega t )$$
    $$= 5\sqrt{2}(\dfrac{1}{\sqrt{2}}sin\omega t + \dfrac{1}{\sqrt{2}} cos\omega t)$$
    $$ = 5\sqrt{2} (sin\omega t \,cos 45^{\circ}+cos \omega t\, sin45^{\circ})$$
    $$ = 5\sqrt{2} (sin(\omega t +45^{\circ}))$$
    $$ = 5\sqrt{2} sin (\omega t+ \pi/4)$$
  • Question 4
    1 / -0
    $$x_1 = A\sin(\omega t - 0.1x)$$ and $$x_2 = A\sin(\omega t - 0.1x - \dfrac{\phi}{2})$$. The resultant amplitude of combined wave is:-
    Solution
    $$ x_1 = A sin (\omega t- 0.1 x)$$
    $$ x_2 = a sin(\omega t-01x-\phi /2)$$
    $$ x_1+x_2 = A(sin(\omega t-0.1x)+sin(\omega t-0.1x-\phi /2))$$
    $$ = A (2sin \dfrac{(\omega t-0.1x)+(\omega t-0.1x-\phi /2)}{2}$$
    $$ cos \dfrac{(\omega t-0.1x)-(wt-01x-\phi /2)}{2})$$
    $$ = (2A cos \phi /4) (sin(\omega t-0.1x - \phi /2))$$
    Amplitude = $$ 2A cos \phi /4$$

  • Question 5
    1 / -0
    The value of phase, at maximum displacement from the mean position of a particle, in SHM is ?
    Solution

  • Question 6
    1 / -0
    The phase difference between two waves represented by 
    $${y_1} = {10^{ - 6}}\sin \left[ {100t + \frac{x}{{50}} + 0.5} \right]m$$
    $${y_2} = {10^{ - 6}}\cos \left[ {100t + \frac{x}{{50}}} \right]m$$
    where x is expressed in metres and t is expressed in seconds is approximately
    Solution
    $$y_{1}=10^{-6} \sin \left[100 t + \dfrac{x}{50}+ 0.5\right] m$$
    $$y_{2}=10^{-6} \cos \left[100 t + \dfrac{x}{50}\right] m$$
    So,$$y^{1}=10^{-6} \cos\left[\dfrac{\pi}{2}-\left(100 t + \dfrac{x}{50}+0.5\right)\right]$$
    $$y^{1}=10^{-6} \cos \left[\dfrac{-\pi}{2}+100 t+\dfrac{x}{50}+0.5\right]$$
    $$\triangle \phi =\phi_{2}-\phi_{1}$$
    $$\phi_{2}=0$$ where as $$\phi_{1}=0.5-\dfrac{\pi}{2}$$
    So,
    $$\triangle \phi=\phi_{2}-\phi_{1}=\dfrac{\pi}{2}-0.5=1.07 \ rad$$
    option $$-A$$ is correct.

































  • Question 7
    1 / -0
    Two parallel beams of light of wavelength $$\lambda $$, inclined to each other at angle $$\theta \ ( <  + 1)$$ are inclined on a plane at near normal incidence. The fringe width will be. 

    Solution

  • Question 8
    1 / -0
    The amplitude of a particle due to superposition of following S.H.Ms. Along the same line is 
    $${ X }_{ 1 }=2sin50\pi t\quad ;\quad { X }_{ 2 }=10sin\left( 50\pi t+{ 37 }^{ } \right) $$
    $${ X }_{ 3 }=-4sin50\pi t\quad ;\quad { X }_{ 4 }=-12sin50\pi t$$
    Solution

  • Question 9
    1 / -0
    Equation of  two S.H.M. $$ x_1 = 5 sin ( 2 \pi t + \pi /4), $$  $$ x_2 =   5\sqrt { 2 } (sin\quad 2\pi t+cos2\pi t)$$ ratio of amplitude & phase difference will be
    Solution
    We have, 
    $$X_{1}=5\sin(2nt+n/4)$$
    $$A_{1}=5\ m$$ and $$\phi_{1}=n/4$$
    $$X_{2}=5\sqrt{2}(\sin 2nt+\cos 2nt)$$
    $$X_{2}=5\sqrt{2}\times \sqrt{2}\left(\dfrac{\sin 2nt}{\sqrt{2}}+\dfrac{\cos 2nt}{\sqrt{2}}\right)$$
    $$X_{2}=10\sin(2nt+\pi/4)$$
    $$A_{2}=10\ m$$ and $$\phi_{2}=\pi/4$$
    $$\dfrac{A_{1}}{A_{2}}=\dfrac{5 m}{10 m}=\dfrac{1}{2}$$ and $$\Delta\phi=\phi_{1}-\phi_{2}=0$$
    Option $$B$$ is correct.










  • Question 10
    1 / -0
    A progressive wave  moves with a velocity of $$36 \mathrm { m } / \mathrm { s }$$ in a medium with a frequency of 200Hz. The phase difference betveen two particles seperated by a distance of $$1$$ $$cm$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now