Self Studies
Selfstudy
Selfstudy

Waves Test - 62

Result Self Studies

Waves Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For a wave displacement amplitude is $$10^-4 m$$,density of air 1.3 kg $$m^-4$$,velocity in air 340 $$ms^-4$$ are frequency is 2000 Hz.The intensity of wave is
    Solution
    $$\begin{array}{l} From\, the\, question \\ A={ 10^{ -8 } }m \\ \rho =1.3\, kg/{ m^{ 3 } } \\ v=340\, m/s \\ v=2000\, Hz \\ The\, \, { { int } }ensity\, of\, wave\, \, is\, given\, by\, the\, following\, relation \\ I=\frac { 1 }{ 2 } \rho { A^{ 2 } }{ \omega ^{ 2 } }c\, \, \, \, \, \, \, \, \, \, ---\left( 1 \right)  \\ \omega \, is\, angular\, frequency\, ,\, \omega =2\pi v \\ c\, is\, the\, speed\, of\, light \\ So,\, equation\, \left( 1 \right) \, becomes \\ I=\frac { 1 }{ 2 } \times 1.3\, \, kg/{ m^{ 3 } }\times { \left( { { { 10 }^{ -8 } }m } \right) ^{ 2 } }\times { \left( { 2\pi \times 2000\, Hz } \right) ^{ 2 } }\times 3\times { 10^{ 8 } }m/s \\ I=3.0761\, W/{ m^{ 2 } } \end{array}$$
    Hence, the option $$D$$ is the correct answer.
  • Question 2
    1 / -0
    The S.H.M. of a particle is given by the equation $$y = 3 \sin \omega t + 4 \cos \omega t .$$The amplitude is
    Solution

  • Question 3
    1 / -0
    Two equations of two SHM are
    $$x=a \ sin(\omega t - \alpha) \ and \ y=b \ cos(\omega t - \alpha)$$
    The phase difference between the two is 
    Solution
    $$\begin{array}{l} Equation\; \, for\, \, \, volatage\, \, is\; \, given\, as: \\ V={ V_{ 0 } }\cos  \omega t \\ Equation\, \, for\, \, \, current\, \, is\, \, given\, as\, \, : \\ l={ l_{ .0 } }\cos  \left( { \omega t-\phi  } \right)  \\ Where, \\ \phi =phase\, \, difference\, \, between\, \, voltage\, \, \, and\, \, \, currect \\ At\, \, time,t=0 \\ V={ V_{ 0 } }\left( { voltage\, \, is\, \, \, \max  imum } \right)  \\ For\, \, \omega t-\phi =0 \end{array}$$
  • Question 4
    1 / -0
    Three simple harmonic motions in the same direction having the same amplitude $$a$$ and period are superposed. IF each differs in phase from the next by $${45}^{o}$$ then
    Solution
    $$\begin{array}{l} Let\, simple\, harmonic\, motions\, be\, represented\, by\,  \\ { y_{ 1 } }=a\sin  \left( { \omega t-\frac { \pi  }{ 4 }  } \right) \, \, ;\, \, { y_{ 2 } }=s\, \sin  \omega t\, and \\ { y_{ 3 } }=a\sin  \left( { \omega t+\frac { \pi  }{ 4 }  } \right)  \\ On\, erimpo\sin  g\, resul\tan  t\, SHM\, will\, be \\ y=a\left[ { \sin  \left( { \omega t-\frac { \pi  }{ 4 }  } \right) +\sin  \omega t+\sin  \left( { \omega t+\frac { \pi  }{ 4 }  } \right)  } \right]  \\ =a\left[ { 2\sin  \omega t\cos  \frac { \pi  }{ 4 } +\sin  \omega t } \right]  \\ =a\left[ { \sqrt { 2 } \sin  \omega t+\sin  \omega t } \right]  \\ =a\left( { 1+\sqrt { 2 }  } \right) \sin  \omega t \\ resul\tan  t\, amplitude\, =\left( { 1+\sqrt { 2 }  } \right) a \\ Now, \\ \frac { { { E_{ { { Re } }sul\tan  t } } } }{ { { E_{ Single } } } } ={ \left( { \frac { A }{ a }  } \right) ^{ 2 } }={ \left( { \sqrt { 2 } +1 } \right) ^{ 2 } }=\left( { 3+2\sqrt { 2 }  } \right)  \\ { E_{ { { Re } }sul\tan  t } }=\left( { 3+2\sqrt { 2 }  } \right) { E_{ S{ { ingle } } } } \end{array}$$
    Hence, the option $$C$$ is the correct answer.
  • Question 5
    1 / -0
    Four waves of the equation given by 
    $$y_1= 5A \ sin \ (wt - Kx + \pi/2)$$
    $$y_2= 2A \ sin \ (wt - Kx + 3 \pi/2)$$
    $$y_3= 6A \ sin \ (wt - Kx)$$
    and   $$y_4= 2A \ sin \ (wt - Kx + \pi)$$
  • Question 6
    1 / -0
    A particle moving along a straight line with a constant acceleration of - 4 m per second square passes through a point on the line with a velocity of + 8 metre per second at the moment when the distance travelled by the particle in 6 second in 5 seconds
    Solution

    $$uy=10sin 60=53√m/s$$

    $$⇒t=2uyg=2×53√10=3√s$$

    $$Sx=uxt+12axt^2$$

    $$1.15=5×t−12a×t^2$$

    $$1.15=5×3√−32a$$

    $$3a^2=5×1.73−1.15=8.65−1.15$$

    $$3a^2=7.5 $$ 

    $$⇒a=153=5m/s^2$$

  • Question 7
    1 / -0
    Equations of motion in the same direction are given by:
    $$y_1 = a \ sin \ (\omega t - kx)$$
    $$y_2 = a \ sin \ (\omega t - kx - \theta)$$
    The amplitude of the medium particle will be:
    Solution
    $$\begin{array}{l} The\, \, resul\tan  t\, \, amplitude\, \, is\, \, given\, \, by \\ { a_{ R } }=\sqrt { { a^{ 2 } }+{ a^{ 2 } }+2\cdot a\cdot a\cos  \theta  }  \\ =\sqrt { 2{ a^{ 2 } }\left( { 1+\cos  \theta  } \right)  }  \\ =2a\cos  \frac { \theta  }{ 2 } \, \, \, \, \, \, \, \, \, \, \, \, \left( { H\cos  \theta =2{ { \cos   }^{ 2 } }\frac { \theta  }{ 2 }  } \right)  \end{array}$$
    Hence,
    option $$(A)$$ is correct answer.
  • Question 8
    1 / -0
    Equations of motion in the same direction are given by:
    $$y_1 = 2a \ sin \ (\omega t - kx)$$
    $$y_2 = 2a \ sin \ (\omega t - kx - \theta)$$
    The amplitude of the medium particle will be:

    Solution
    $$\begin{array}{l} The\, \, resul\tan  t\, \, amplitude\, \, is\, \, given\, \, by \\ { a_{ R } }=\sqrt { { a^{ 2 } }+{ a^{ 2 } }+2\cdot a\cdot a\cos  \theta  }  \\ =\sqrt { 2{ a^{ 2 } }\left( { 1+\cos  \theta  } \right)  }  \\ =2a\cos  \frac { \theta  }{ 2 } \, \, \, \, \, \, \, \, \, \, \, \, \left( { H\cos  \theta =2{ { \cos   }^{ 2 } }\frac { \theta  }{ 2 }  } \right)  \end{array}$$
    Hence,
    option $$(A)$$ is correct answer.
  • Question 9
    1 / -0
    A small mass executes linear SHM about $$O$$ with amplitude $$a$$ and period $$T$$. Its displacement from $$O$$ at time $$T/S$$ after passing through $$O$$ is
    Solution
    $$\begin{array}{l} y=a\sin  wt \\ =a\sin  \frac { { 2\pi  } }{ T } .\frac { T }{ 4 }  \\ =a\sin  \frac { \pi  }{ 4 } =\frac { a }{ { \sqrt { 2 }  } }  \end{array}$$
    Hence, the option $$D$$ is the correct answer.
  • Question 10
    1 / -0
    If the fundamental frequency of string is $$220 \mathrm { cps }$$, the frequency of fifth harmonic will be
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now