Self Studies
Selfstudy
Selfstudy

Units and Measurements Test - 21

Result Self Studies

Units and Measurements Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following pair does not have same dimensions ?
    Solution
    $${\textbf{Explanation of options A, B and C:}}$$
    A. Pressure $$=$$ Modulus of Elasticity $$= \dfrac{F}{A} = M^{1} L^{-1} T^{-2}$$
    B. Angular velocity $$= \omega = T^{-1}$$ 
    Velocity gradient $$= \dfrac{dv}{dz} = \dfrac{LT^{-1}}{L} = T^{-1}$$
    C. Surface Tenstion $$= \dfrac{F}{l} = $$ Force constant $$=  \dfrac{M^{1} L^{1} T^{-2}}{L^{1}} = M  T^{-2}$$
    $${\textbf{Explanation of option D:}}$$
    Impulse $$= F\times t = M^{1} L^{1} T^{-2} \times T^{1} = M^{1} L^{1} T^{-1}$$
    Torque $$= \vec{r} \times  \vec{F} = L^{1} \times M^{1} L^{1} T^{-2} = M^{1} L^{2} T^{-2}$$

    $${\textbf{Correct option: D}}$$
  • Question 2
    1 / -0
    Arrange the following physical quantities in the decreasing order of dimension of length.
    I. Density 
    II. Pressure 
    III. Power 
    IV. Impulse
    Solution
    $$Density  = \dfrac{Mass}{length}  =  M^{1} L^{-3} T^{0}$$
    $$ Pressure  =  \dfrac{force}{Area}  =  \dfrac{M^{1}L^{1}t^{-2}}{L^{2}} = M^{1}L^{-1}T^{-2}$$
    $$Power = F\times v = M^{1}L^{1}T^{-2} \times LT^{-1} = M^{1}L^{2}T^{-3}$$
    $$Impulse = f\times t = M^{1}L^{1}T^{-2}\times T^{1} = M^{1}L^{1}T^{-1}$$

    Hence, option D is correct.
  • Question 3
    1 / -0
    Dimensional formula for capacitance is:
    Solution
    $$E=\dfrac{Q^2}{2C}$$
    Dimensions of C will be dimension of $$\dfrac{Q^2}{E}$$$$=\dfrac{I^2T^2}{ML^2T^{-2}}$$$$=M^{-1}L^{-2}T^4I^2$$
    Hence, option A is correct.
  • Question 4
    1 / -0
    The dimensional formula for coefficient of kinematic viscosity is :
    Solution

    Kinematic viscocity $$=\dfrac{coeff \ of \ viscocity}{ density}$$

                                     $$=\dfrac{ML^{-1}T^{-1}}{ML^{-3}}$$

                                     $$=M^{0}L^{2}T^{-1}$$
  • Question 5
    1 / -0
    $${ M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 }$$ represents
    Solution
    Stress and pressure both are defined as $$\dfrac{F}{A}=\dfrac{MLT^{-2}}{L^2}=ML^{-1}T^{-2}$$
    Young's modulus is calculated by formula $$\dfrac{stress}{strain}$$. As strain is dimensionless the Young's modulus will also have dimensions of stress only.
    Hence, option D is correct.
  • Question 6
    1 / -0
    Dimensions of impulse are :
    Solution

    $$Impulse=F\times

    t=M^{1}L^{1}T^{-2}\times T^{1}=M^{1}L^{1}T^{-1}$$

  • Question 7
    1 / -0
    The dimensional formula for Magnetic induction is :
    Solution
    $$F=BQV$$
    Dimension of B will be $$\dfrac{MLT^{-2}}{ATLT^{-1}}=ML^0T^{-2}A^{-1}$$
  • Question 8
    1 / -0
    Dimensions of $$C\times R$$ (Capacity x Resistance) is:
    Solution
    C = Capacity $$=M^{-1}L^{-2}I^{2}T^{4}$$
    R = Resistance $$=ML^{2}I^{-2}T^{-3}$$
    So, 
    $$C\times R=T^{1}M^{0}L^{0}I^{0}$$
  • Question 9
    1 / -0
    Dimensional formula for Angular momentum is:
    Solution
    $$\textbf {Hint :}$$ Use angular momentum $$L=mvr$$
    $${\textbf{Explanation:}}$$
    Angular Momentum $$L=mvr$$
    m is mass, v is velocity and r is radius
    We know that dimension formula of velocity is 
    $$ LT^{-1}$$
    Dimensional formula of $$L=M \times LT^{-1}\times L=ML^2T^{-1}$$

    $${\textbf{Correct option: A}}$$
  • Question 10
    1 / -0
    The pair of physical quantities not having the same dimensional formula are:
    Solution
    Acceleration $$=LT^{-2}=$$Gravitational field strength
    Torque $$=ML^{2}T^{-2}$$
    Angular momentum $$=ML^{2}T^{-1}$$
    Modulus of elasticity $$=ML^{-1}T^{-2}=$$ Pressure

    Hence, option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now