Self Studies

Units and Measurements Test - 22

Result Self Studies

Units and Measurements Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A pair of physical qunatities having the same dimensional formula are:
    Solution
    Momentum $$\rightarrow mv=M^{1}L^{1}T^{-1}$$
    Impulse $$\rightarrow f\times t=M^{1}L^{1}T^{-1}$$
    Energy $$=ML^{2}T^{-2}$$
    Pressure $$=ML^{-1}T^{-2}$$
    Power $$=ML^{2}T^{-3}$$
    Hence, option A is correct.
  • Question 2
    1 / -0
    Modulus of Elasticity is dimensionally equivalent to:
    Solution
    Modulus of elasticity $$=M^{1}L^{-1}T^{-2}$$
    Stress $$=M^{1}L^{-1}T^{-2}$$
    Surface tension $$=\dfrac{f}{l}=M^{1}L^{0}T^{-2}$$
    Strain 
    $$=\dfrac{\Delta L}{L}=M^{0}L^{0}T^{0}$$
    Coeff of viscosity$$=F/A\dfrac{dv_{x}}{dx}=\dfrac{MLT^{-2}}{L^{2}\dfrac{LT^{-1}}{L}}=ML^{-1}T^{-1}$$
    Hence, option A is correct.

  • Question 3
    1 / -0
    A pair of physical quantities having the same dimensional formula are:
    Solution
    Force$$=M^{1}L^{1}T^{-2}$$
    Work$$=ML^{2}T^{-2}$$
    Energy$$=ML^{2}T^{-2}$$
    Torque$$=ML^{2}T^{-2}$$
    Power$$=ML^{3}T^{-3}$$
    Hence, option B is correct.
  • Question 4
    1 / -0
    The physical quantities not having same dimensions are :
    Solution
    $$\dfrac{1}{\sqrt{\mu _{0}\epsilon _{0}}}=\sqrt{L^{2}T^{-2}}=LT^{-1}$$
    Speed $$=LT^{-1}$$
    Stress, Young's modulus 
    $$=\dfrac{MLT^{-2}}{L^{2}}=ML^{-1}T^{-2}$$
    Momentum $$=MLT^{-1}$$
    Torque, Work $$=ML^{2}T^{-2}$$
    Planck's constant $$=\dfrac{ML^{2}T^{-2}}{\left ( LT^{-1} \right )}\times L=ML^{2}T^{-1}$$
    Hence, option B is correct.
  • Question 5
    1 / -0
    The dimensional formula for universal gravitational constant is:
    Solution

    The correct option is $$D.$$

    Formula for Gravitational force is:

    $$F= \dfrac{G M m}{r^{2}}$$

    So, Formula for G will be,

    $$G = \dfrac{F r^{2}}{M m}$$

    Thus, the dimensional formula for G is,

    $$M^{-1}L^{3}T^{-2}$$

  • Question 6
    1 / -0
    Which one of the following represents the correct dimensions of the coefficient of viscosity ?
    Solution
    For calculating coefficient of viscosity we can use the formula, $$F=\dfrac{\eta vA}{S}$$
    Dimension of coefficient of viscosity will be $$=\dfrac{Dimension \ of \ force \times Distance}{Velocity \times Area}$$

                                                                             $$=\dfrac{MLT^{-2}\times L}{LT^{-1}L^2}$$
                                                                             
                                                                             $$=ML^{-1}T^{-1}$$
  • Question 7
    1 / -0
    The pair of physical quantities having the same dimensional formula is:
    Solution
    Angular momentum $$=M^{1}L^{2}T^{-1}$$
    Torque $$=ML^{2}T^{-2}$$
    Strain energy $$=\frac{1}{2} \times ML^{2}T^{-2}$$
    Entropy $$=ML^{2}T^{-2}K^{-1}$$
    Power $$=ML^{2}T^{-3}$$
    Hence torque and strain energy has same dimensions,
  • Question 8
    1 / -0
    Dimensional formula of Torque is:
  • Question 9
    1 / -0
    Dimensions of $$\dfrac { 1 }{ { \mu  }_{ 0 }{ \epsilon  }_{ 0 } } $$ , where symbols have their usual meaning are :
  • Question 10
    1 / -0
    Planck's constant has the dimensions as that of:
    Solution
    Plank's constant $$=ML^{2}T^{-1}$$
    Energy $$=M^{1}L^{2}T^{-2}$$
    Power $$=M^{1}L^{2}T^{-3}$$
    Linear momentum 
    $$=MLT^{-1}$$
    Angular momentum $$=ML^{2}T^{-1}$$
    Hence, option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now