Self Studies

Units and Measurements Test - 40

Result Self Studies

Units and Measurements Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If 'muscle times speed equals power', then what is the ratio of the $$SI$$ unit and the $$CGS$$ unit of muscle?
    Solution
    Given :

    Muscles $$\times$$ Speed $$=$$ Power

    and we know that 

    Force $$\times$$ Speed $$=$$ Power

    comparing both the equations; 

    Muscles $$=$$ Force

    S.I. unit of force $$=$$ N $$=$$ Newton

    CGS unit of force $$=$$ dyne

    and $$1N = 10^5 dynes$$

    So the SI unit of muscles will be 

    = $$N/ dyne=10^5$$
  • Question 2
    1 / -0
    Dimensional formula of $$\dfrac{megnetic\, flux}{electric\, flux}$$ is 
    Solution
    Dimensional formula of magnetic flux $$=ML^2T^{-2}A^{-1}$$

    Dimensional formula for electric flux $$=ML^3T^{-3}A^{-1}$$

    Dimensional formula of $$\dfrac{Magnetic\, flux}{Electric flux}=\dfrac{[ML^2T^{-2}A^{-1}]}{[ML^3T^{-3}A^{-1}]}=[TL^{-1]}$$ 
  • Question 3
    1 / -0
    The dimensions of a modulus of elasticity are:
    Solution

    Young modulus, $$\gamma =\dfrac{stress}{strain}=\dfrac{Force\,/\,Area}{\Delta L/L}=\dfrac{\left[ ML{{T}^{-2}} \right]/\,\left[ {{M}^{o}}{{L}^{2}}{{T}^{o}} \right]}{\left[ {{M}^{o}}L{{T}^{o}} \right]/\left[ {{M}^{o}}L{{T}^{o}} \right]}=\left[ M{{L}^{-1}}{{T}^{-2}} \right]$$

    Hence, Dimension is $$\left[ M{{L}^{-1}}{{T}^{-2}} \right]$$ .

  • Question 4
    1 / -0
    Dimensional formula for pressure head is 
    Solution
    $$[Presure\,head]=\dfrac{[Pressure]}{[Density]\times [g]}$$

    $$Pressure=\dfrac{Force}{Area}$$

    But, $$Force=Mass \times Accelaration=[M][LT^{-2}]=[MLT^{-2}]$$

    Then,

    $$[Pressure]=\dfrac{[MLT^{-2}]}{[L^2]}=[ML^{-1}T^{-2}]$$

    $$[Density]=\dfrac{[Mass]}{[Volume]}=\dfrac{[M]}{[L^{3}]}=ML^{-3}$$

    Now,

    $$[Presure\,head]=\dfrac{[Pressure]}{[Density]\times [g]}=\dfrac{[ML^{-1}T^{-2}]}{[ML^{-3}][LT^{-2}]}=[M^0L^1T^0]$$
  • Question 5
    1 / -0
    Round off to $$3$$ significant figures,
    a) $$20.96$$
    b) $$0.0003125$$
    Solution
    $$\begin{array}{l}\text { According to the rule }\\\text { of rounding off:}\end{array}$$

    $$\text { (a) } 20.96^{}=21.0$$

    $$\text{ (b) }0.0003125=3.125 \times 10^{-4} = 3.12 \times 10^{-4}$$
  • Question 6
    1 / -0
    The correct dimensional formula for impulse is given by
    Solution
    $$[Impulse]=[MLT^{-1}]$$
  • Question 7
    1 / -0
    Which one of the following does not have the same dimensions 
    Solution
    The work and energy have the same dimensions whereas the option $$B$$ and $$C$$ have the quantities which are dimensionless.

    For option $$D$$:-
    [Planck constant]=$$[ML^2T^{-1}]$$ 
    and [Energy]=$$[ML^2T^{-2}]$$

    So, option $$D$$ is correct.
  • Question 8
    1 / -0
    Dimension of work done is
    Solution
    We know that 
    Work done = Force $$\times $$ Displacement 
    $$W= MLT^{-2} \times L= [ML^2T^{-2}]$$
  • Question 9
    1 / -0
    $$L^{-1}M^{1}T^{-2}$$ are the dimension for________.
    Solution
    $$Pressure=\dfrac{Force}{Area}=\dfrac{Mass\times Acceleration}{Area}$$

    $$=\dfrac{[M][LT^{-2}]}{[L^2]}=M^1L^{-1}T^{-2}$$

    So, correct answer is option (A).
  • Question 10
    1 / -0
    Of the following pairs of physical quantities, which one is dimensionally odd?
    Solution
    All other pair have same dimensions while frequency and angle have different dimensions. The dimension of frequency is $$[T^{-1}]$$ while angle is a dimensionless quantity.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now