Self Studies

Mechanical Properties of Solids Test - 19

Result Self Studies

Mechanical Properties of Solids Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The length of a wire under stress changes by 0.01%. The strain produced is
    Solution
    Strain $$=\dfrac{0.0001\Delta L}{L}  =      0.01$$% $$ of L=\dfrac{.01\times L}{100}=10^{-4}L$$
    $$=10^{-4}$$

  • Question 2
    1 / -0
    Four wires made of same materials are stretched by the same load. Their dimensions are given below. The one which elongates more is ?
    Solution
    $$\Delta l=\dfrac{FL}{Ay}$$
    $$A\rightarrow \Delta l=\dfrac{F\times 1}{y\pi (\dfrac{1}{2})^{2}}\times 10^{6} =  \dfrac{yF}{\pi y}\times 10^{6}$$
    $$B\rightarrow \Delta l=\dfrac{F\times 2}{y\pi 1^{2}}\times 10^{6}  =  \dfrac{2F}{\pi y}\times 10^{6}$$
    $$C\rightarrow \Delta l=\dfrac{F\times 3\times 4}{y\pi 1}\times 10^{6}  =  \dfrac{4}{3}\dfrac{F}{\pi y}\times 10^{6}$$
    $$D\rightarrow \Delta l=\dfrac{F\times \dfrac{1}{2}}{y\pi (\dfrac{1}{4})^{2}}\times 10^{6}  =  \dfrac{8F}{Y\pi }\times 10^{6}$$
    $$\Delta l$$ of wire D is longest.

  • Question 3
    1 / -0
    A wire of length '$$l$$' and radius '$$r$$' is clamped rigidly at one end. When the other end of the wire is pulled by a force '$$F$$', its length increases by $$'x'$$. Another wire of same material of length '$$2l$$' and radius $$'2r$$' is pulled by a force '$$2F'$$, the increase in its length will be :
    Solution
    In the first case we have 
    $$x=\dfrac{Fl}{\pi r^2Y}$$
    and in the for the second wire we have the change in length as
    $$\dfrac{2F\times 2l}{\pi(2r)^2Y}=\dfrac{Fl}{\pi r^2Y}=x$$
  • Question 4
    1 / -0
    The length of a wire is $$4m$$. Its length is increased by $$2mm$$ when a force acts on it. The strain is:
    Solution
    $${L}'=4.002  m$$

    $$Strain =\dfrac{0.002}{4}$$$$=5\times 10^{-4}$$ (using standard result)
  • Question 5
    1 / -0
    A steel wire of $$2mm$$ in diameter is stretched by applying a force of $$72N$$. Stress in the wire is
    Solution
    Diameter=$$2\times 10^{-3}$$m
    Radius=$$10^{-3}$$m
    area of cross section=$$\pi r^{2}$$
    $$A=\dfrac { 22 }{ 7 } \times { 10 }^{ -6 }㎡\\ F=72N\\ stress=\dfrac { F }{ A } \\ =\dfrac { 72 }{ \dfrac { 22 }{ 7 } \times { 10 }^{ -6 } } =\dfrac { 72 }{ 3.14 } \times { 10 }^{ -6 }$$
    So, stress=$$22.92\times 10^{6}M/m^{2}$$
    or stress=$$2.29\times10^{7}N/m^{2}$$
  • Question 6
    1 / -0
    The elongation produced in a copper wire of length 2m and diameter 3mm, when a force of 30N is applied is [Y$$=$$1x10$$^{11}$$N.m$$^{-2}$$]
    Solution
    $$L=2m,$$
    $$d=3mm,   A=\dfrac{9\pi }{4}\times 10^{-6} m^{2}$$
    $$\Delta L=\dfrac{30\times 2}{\dfrac{9\pi }{4}\times 10^{-6}\times 10^{11}}$$$$=8.48\times 10^{-5}  m$$$$=0.085  mm$$
  • Question 7
    1 / -0
    The lengths of two wires of the same material and diameter are $$100 cm$$ and $$125 cm$$. If same force is applied on them, the elongation in the first wire is $$4 mm$$. The elongation in the second wire (in mm) is
    Solution
    $$L_{1}=100 cm    ,L_{2}=125 cm$$
    $$\Delta L_{1}=4 cm ,   \Delta L_{2}=?$$
    $$A_{1}=A_{2}  Y_{1}=Y_{2}  ,  F_{1}=F_{2}$$
    $$\dfrac{\Delta L_{1}}{L_{1}}=\dfrac{\Delta L_{2}}{L_{2}}$$
    $$\dfrac{1250\times 4}{1000}=\Delta L_{2}$$
    $$=5  mm$$
  • Question 8
    1 / -0
    The force required to double the length of a steel wire of area of cross-section $$5 \times 10^{-5}  m^{2}$$ (in N) is :
    ($$Y=20 \times 10^{10}  Pa$$)
    Solution
    $$L=\Delta L$$
    $$F=\dfrac{\Delta L}{L} AY=AY$$
    $$=5\times 10^{-5}\times 20\times 10^{10}$$
    $$=10^{7} N$$
  • Question 9
    1 / -0
    The length of two wires are in the ratio $$3 : 4$$.Ratio of the diameters is $$1:2$$; young's modulus of the wires are in the ratio $$3:2$$; If they are subjected to same tensile force, the ratio of the elongation produced is
    Solution
    $$\displaystyle \frac{L_{1}}{L_{2}}=\frac{3}{4},  \quad  \frac{D_{1}}{D_{2}}=\frac{1}{2} ,  \quad \frac{A_{1}}{A_{2}}=\frac{1}{4}$$

    $$\dfrac{y_{1}}{y_{2}}=\dfrac{3}{2}$$  same force

    $$\dfrac{\Delta L_{1}}{\Delta L_{2}}=\dfrac{F.L_{1}}{A_{1}y_{1}}\times \dfrac{A_{2}y_{2}}{FL_{2}}$$$$=\dfrac{3}{4}\times \dfrac{4}{1}\times \dfrac{02}{3}$$

    $$\dfrac{\Delta L_{1}}{\Delta L_{2}}=\dfrac{2}{1}$$
  • Question 10
    1 / -0
    A solid sphere hung at the lower end of a wire is suspended from a fixed point so as to give an elongation of $$0.4mm$$. When the first solid sphere is replaced by another one made of same material but twice the radius, the new elongation is
    Solution
    As radius is doubled volume becomes 8 times and, hence, the wt. of sphere.
    The force becomes 8 times.
    $$F  \propto  \Delta L$$
    $$\therefore \Delta L$$ also becomes 8 times
    $$\Delta {L}'=8\times 0.4  mm$$$$=3.2  mm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now